Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 152

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 8 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  transgenic plant
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 8 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
High salinity interferes in sugarcane growth and development, affecting not only crop yield but also reducing sucrose concentration in culms. Sugarcane plants submitted to salt stress can accumulate compatible solutes, such as proline, which may counteract the effects of salt accumulation in the vacuole and scavenge reactive oxygen species. The objective of this study was to evaluate the response to salt stress of sugarcane plants transformed with the Vigna aconitifolia P5CS gene, which encodes Δ1- pyrroline-5-carboxylate synthetase, under the control of a stress-induced promoter AIPC (ABA-inducible promoter complex). For this, 4-month-old clonally multiplied sugarcane plants from two transformation events were irrigated every 2 days with 1/10 Hoagland’s solution supplemented with 100, 150 and 200 NaCl, progressively, during 28 days. Transgenic lines showed increased transgene expression in 3.75-fold when compared with the control plants after 9 days of irrigation with saline water, which can explain the higher proline concentration found in these plants. At the end of the experiment (day 28), the transgenic lines accumulated up to 25 % higher amounts of proline when compared with non-transformed control plants. Stress response in transgenic plants was also accompanied by a reduction of malondialdehyde (MDA) derived from cellular lipid peroxidation in leaves, lower Na⁺ accumulation in leaves and maintenance of photochemical efficiency of PSII. Thus, proline contributed to the protection of the photosynthetic apparatus and the prevention of oxidative damage in transgenic sugarcane under salt stress.
12
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Transgenic plants - genetically modified food

75%
The analysis of changes undergoing in plant production and food industry enables concluding that food production in the XXIst century will additionally be based on genetically modified organisms. The article reports on general ideas concerning genetically modified organisms, selected transgenic plants and crop acreage planted to genetically modified plants in Poland and world wide. The government policy on transgenic food is analysed as well.
The purpose of this study was to determine the influence of growth conditions and medium composition on the production of chitinase by Strtptomyces sp. (strain S₂₄₂,). Production of chitinase by strain S₂₄₂ was detected on colloidal chitin agar (CCA) medium after 8 days of incubation at 28°C resulting in a clear zone 10 mm around the colony. Chitinase activity was assayed as the amount of N-acetylglucosamine released in pmol/ml/min using the dinitrosalicylic acid assay method. The crude enzyme had maximum activity (0.162 U ml/l) after 4 days of incubation at pH 7 and 30°C when the broth medium was supplemented with 1.6% of colloidal chitin. However, enzyme activity was strongly decreased at 40°C and extreme acidic and alkaline pH values. SDS-PAGE and zymogram analysis revealed six distinctive bands that range from 39 to 97 kDa with chitinolytic activity. The findings of this investigation create a possibility for the use of the organism in the commercial production of chitinase. In addition, it can be a source of DNA for cloning the chitinase gene(s) to generate phytopathogen resistant transgenic plants.
Allene oxide synthase (AOS, EC 4.2.1.92) is the first specific jasmonate biosynthetic pathway gene. In this study, a full-length cDNA of AOS gene was cloned from common wheat nannong 9918. The gene contains an open reading frame (1,446 bp) encoding 418 amino acids. Comparative and bioinformatic analysis revealed that the deduced protein of TaAOS was highly homologous to AOSs from other plant species. The transcript of TaAOS was found to be abundantly expressed in the flag leaves, and was up-regulated by the inoculation of B. Graminis (DC.) E.O. Speer f. sp. Tritici (Bgt) in wheat leaves. In addition, it was also induced by high concentration of NaCl and ZnCl₂. When TaAOS was overexpressed in tobacco leaves via Agrobacterium tumefaciens infection, the transgenic tobacco plants displayed stronger tolerance to ZnCl₂ stress compared to transgenic GFP plants. Taken together, the above facts demonstrated that TaAOS may play a role in response to diverse stresses in plants.
Multiplex PCR is a variant of conventional PCR which includes two or more pairs of primers in a single reaction to amplify corresponding genes simultaneously. In this study, a reliable multiplex PCR analysis protocol was established for simple and fast detection of transgenes in plant materials. Two pairs of primers, corresponding to neomycin phosphotransferase gene and 1-aminocyclopropane-1-carboxylate synthase gene, were selected for target and resident gene respectively. The method bypasses routine DNA extraction, requires only very little amount of plant tissue and produces reliable results as shown by successful discrimination of transformed and non transformed tobacco, tomato and kumquat materials. The method facilitates early identification of transgenic buds when they are still quite small.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 8 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.