Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 93

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 5 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  salt stress
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 5 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
High salinity interferes in sugarcane growth and development, affecting not only crop yield but also reducing sucrose concentration in culms. Sugarcane plants submitted to salt stress can accumulate compatible solutes, such as proline, which may counteract the effects of salt accumulation in the vacuole and scavenge reactive oxygen species. The objective of this study was to evaluate the response to salt stress of sugarcane plants transformed with the Vigna aconitifolia P5CS gene, which encodes Δ1- pyrroline-5-carboxylate synthetase, under the control of a stress-induced promoter AIPC (ABA-inducible promoter complex). For this, 4-month-old clonally multiplied sugarcane plants from two transformation events were irrigated every 2 days with 1/10 Hoagland’s solution supplemented with 100, 150 and 200 NaCl, progressively, during 28 days. Transgenic lines showed increased transgene expression in 3.75-fold when compared with the control plants after 9 days of irrigation with saline water, which can explain the higher proline concentration found in these plants. At the end of the experiment (day 28), the transgenic lines accumulated up to 25 % higher amounts of proline when compared with non-transformed control plants. Stress response in transgenic plants was also accompanied by a reduction of malondialdehyde (MDA) derived from cellular lipid peroxidation in leaves, lower Na⁺ accumulation in leaves and maintenance of photochemical efficiency of PSII. Thus, proline contributed to the protection of the photosynthetic apparatus and the prevention of oxidative damage in transgenic sugarcane under salt stress.
Embryo axes of lupine (Lupinus luteus L. ‘Mister’) were subjected to 0.1 M NaCl salt stress for 24 and 48 h. The ultrastructure modification and adjustment of antioxidant enzymes activities and izoenzymes profiles were observed. In cells of lupine embryo axes grown for 48 hours in medium with 0.1 M NaCl mitochondria took the forked shape and bulges of the outer mitochondrial membranes appeared. Moreover, the inflating and swelling of rough endoplasmic reticulum (RER) lumen and fragmentation of RER were noticed. The level of H2O2 was higher in salt treated embryo axes after 24 hours and increase of thiobarbituric acid reactive substances was observed after both 24 and 48 h of salt treatment. Native gel electrophoresis showed increased intensities of bands for catalase isozymes in response to salt stress, whereas activity of catalase was higher only in embryo axes grown for 48 h in control conditions. Appearance of two new isoforms of ascorbate peroxidase was observed after 48 h only under control condition, however increased activities were stated for both control and salt-stress condition after 48 h. No changes in isozymes pattern for superoxide dismutase were observed, but significant decrease in superoxide dismutase activity was noticed in relation to time and salt stress. Possible role of these enzymes in salt stress tolerance is discussed. The 0.1 M salt stress is regarded as a middle stress for lupine embryo axes and the efficiency of stress prevention mechanisms is proposed.
Two methylotrophic strains of Bina coalmine spoil BNV7b and BRV25 were identified based on physiological traits and 16S rDNA sequence as Methylophilus and Methylobacterium species. The strains exhibited similar carbon utilization but differed in N utilization and their response to the metabolic inhibitors. Methylophilus sp. was less tolerant to salt stress and it viability declined to one tenth within 4 h of incubation in 2M NaCl due to membrane damage and leakage of the intracellular electrolytes as evident from malondiaaldehyde (MDA) assay. In 200 mM NaCl, they exhibited increased superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activity while in 500 mM NaCl, enzyme activities declined in Methylophilus sp. and increased in Methylobacterium sp. Among exogenously applied osmoprotectants proline was most efficient; however, polyols (mannitol, sorbitol and glycerol) also supported growth under lethal NaCl concentration.
Effects of salt stress on the activity of peroxidase (PRX) isozyme and leaf proteins were studied in the three strawberry varieties, Camarosa, Tioga and Chandler. Plants were watered with modified 1/3 Hoagland nutrient solution containing 0 (control), 8.5, 17.0 and 34.0 mM NaCl for 30 days fallowing 20 days acclimation. PRX activity was assayed in leaf extracts and PRX profiles of control and salt treated plants were performed by native polyacrylamide gel electrophoresis (PAGE).During the salt stress Tioga and Camarosa tolerated the cellular damage with less electrolyte leakage while Chandler exhibited a severe cellular damage with the highest (87.5 % in 34.0 mM NaCl treatment) electrolyte leakage. Total soluble protein content was decreased by salinity in Tioga (from 11.35 to 5.86 mgg-1DW) and Chandler (from 9.35 to 3.90 mgg-1DW) while it was almost unchanged in Camarosa. Salt stress increased total and specific PRX activity as compared with the control in all the varieties. In native PAGE, one basic isoperoxidase band (Rf=0.27) was observed commonly with different band intentity in all the treatments. Therefore, it might be associated with lignification and recovery of cell membrane damage in strawberry plants under salt stress.
The effect of salinity on the activity of glutamine synthetase (GS EC 6.3.1.2.) and glutamate dehydrogenase (NAD(P)H-GDH EC 1.4.1.2-4) in shoots and roots of triticale seedlings was investigated. Stressed plants were cultured hydroponically on the 100 mM NaCl-enriched medium for 7 days and the physiological responses were measured. Apart from changes in morphology of plants, alterations in GS and NAD(P)H-GDH activity were reported. GS activity in roots of stressed plants grew slightly and in shoots it decreased by approx. 30% as compared to control plants. In shoots of both control and stressed plants two GS isoforms were detected: cytoplasmic (GS1) and chloroplastic (GS2). A drop in total GS activity in shoots of NaCl-treated plants was due to the drop in activity of GS2 isoform. The activity of GS1 grew slightly under saline stress. After staining of gels for GDH activity, no changes in isoforms were noted as compared with the control plants.
A full-length cDNA of a new serine/threonine (Ser/Thr) protein kinase gene, designated as BnSOS2 (GenBank Acc. No.AY310413), was cloned from Brassica napus by rapid amplification of cDNA ends (RACE). The fulllength cDNA of BnSOS2 was 1779 bp and contained a 1539-bp open reading frame encoding a protein of 512 amino acids. Homology analysis shows that BnSOS2 strongly resembles other Ser/Thr protein kinase genes, and that its putative protein belongs to a typical Ser/Thr kinase family. Northern blot analysis reveals that BnSOS2 is salt-inducible. Our results indicate that BnSOS2 is a new member of the plant SOS2 gene family, which may play an important role in salt tolerance of plants.
Mentha pulegium L. is a medicinal and aromatic plant belonging to the Labiatae family present in the humid to the arid bioclimatic regions of Tunisia. We studied the effect of different salt concentrations on plant growth, mineral composition and antioxidant responses. Physiological and biochemical parameters were assessed in the plant organs after 2 weeks of salt treatment with 25, 50, 75 and 100 mM NaCl. Results showed that, growth was reduced even by 25 mM, and salt effect was more pronounced in shoots (leaves and stems) than in roots. This growth decrease was accompanied by a restriction in tissue hydration and K⁺ uptake, as well as an increase in Na⁺ levels in all organs. Considering the response of antioxidant enzymes to salt, leaves and roots reacted differently to saline conditions. Leaf and root guaiacol peroxidase activity showed an increase by different concentration of NaCl, but superoxide dismutase activity in the same organs showed a slight modification in NaCl-treated leaves and roots. Moreover, polyphenol contents and antioxidant activity were analysed in M. pulegium leaves and roots under salt constraint. The analysis showed an increase of total polyphenol content (2.41–8.17 mg gallic acid equivalent g⁻¹ dry weight) in leaves. However, methanol extract of leaves at 100 mM NaCl displayed the highest DPPH scavenging ability with the lowest IC₅₀ value (0.27 µg ml⁻¹) in comparison with control which exhibited IC₅₀ equal to 0.79 µg ml⁻¹ .
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 5 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.