Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  phytoplankton diversity
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Most scenarios of the predicted climate change in Europe imply that the increasing temperature trend will be maintained in winter seasons. The presence or absence of the ice cover in winter can impact on the functioning of lake ecosystems. The research was carried out in two mesotrophic and dimictic lakes in winter with and without ice cover. The biomass and phytoplankton and its composition was analysed with reference to physical factors (PAR and temperature). The research proved that poor thermal-light conditions under the ice/snow cover favoured the development of nanoplanktonic species from the genus Cryptomonas (Cryptophyta) or Stephanodiscus (Bacillariophyceae), whereas microplanktonic species of dinoflagellates, diatoms or green algae prevailed during the ice-free winter. The highest phytoplankton biomass and species richness were recorded during ice-free winter, which affected a higher Shannon-Wiener diversity index and evenness. It has been shown that the mild winter creates good conditions for the development of phytoplankton species characteristic for the mixing periods. The lack of inverse thermal stratification during winter can lead to disturbance in the functioning of the water ecosystems throughout the year.
The comparison of species richness, abundance and diversity of phytoplankton blooms, which developed both in winter and summer seasons as an effect of lake hypertrophy, was the aim of this study. In the ice-covered lake (0.30 mg PO₄ -P L⁻¹, 1.35 mg NH₄ -N L⁻¹; TSISD = 64; TSIchl = 93), the algal bloom, responsible for high concentration of dissolved oxygen in water, consisted mainly of the centric diatom Stephanodiscus minutulus (3.9 × 10⁷ ind. L⁻¹) accompanied by Limnothrix redekei (Cyanobacteria), Koliella longiseta (Chlorophyceae), > 1.1 × 10⁶ ind. L⁻¹ each, as well as Mallomonas sp. (Chrysophyceae) and Monoraphidium komarkovae (Chlorophyceae), >5.0 × 10⁵ ind. L⁻¹ each. The toxic cyanobacterium Planktothrix agardhii of extremely long trichomes (up to 0.93 mm) and potentially toxic dinoflagellate Peridinium aciculiferum f. inerme occurred also in high numbers (1.9 × 10⁵ ind. L⁻¹ and 7.7 × 10⁴ ind. L⁻¹, respectively). In summer (0.05 mg PO₄ -P L⁻¹; 0.42 mg NH₄ -N L⁻¹; TSISD = 78; TSIchl = 102), the phytoplankton bloom consisted of P. agardhii (average total abundance 49.4 × 10⁶ ind. L⁻¹) and ten other taxa of Cyanobacteria, Bacillariophyceae, Chlorophyceae and Cryptophyceae (average total abundance 17.9 × 10⁶ ind. L⁻¹). The total phytoplankton abundance was 1.5 times higher in summer than in winter and the total biomass of the most abundant species was approximately 4 times higher in warm (139.8 mg L⁻¹) than in cold season (32.5 mg L⁻¹). The values of the Shannon-Weaver diversity index were very low, however, over 2 times higher in summer (0.60) than in winter (0.31). The obtained results revealed that in the hypertrophic lake the very high nutrient concentrations (especially NH₄ -N and PO₄ -P), found both in winter and summer, were responsible for year-long mass development of phytoplankton. The winter phytoplankton was composed mainly of very small centric diatoms, whereas summer blooms were created by filamentous cyanobacteria (mainly Oscillatoriales; 98%).
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.