Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 64

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 4 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  medicinal property
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 4 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
1
100%
Avocado is one of the most commonly preferred shades grown tree crop under Coffee ecosystem. In view of that, Peninsula of Nicoya and Cost Rica farmer was rated avocado (Persea americana L. Mill) is a primary shade tree crop under coffee plantation at the level of 66.3 per cent and it ranked as a fourth position after the Inga spp., Guazumala ulmiflora and Cardia alliodoara. Hence, the avocado is a commercially important shade cum fruit yielding tree under coffee ecosystem which has cultivating both in humid tropic as well as subtropical climates of throughout the world. The tree is basically grown as the forest species but later on as a shade growing tree under coffee cultivation because of high nutritional and medicinal values of fruit and it makes for wider diversity. Thereafter it was entered into the other parts of the world from Central America and Mexico. The tree is of multipurpose in nature and also helps to avoid the soil and water erosion by way of its wider spread canopy. Generally, Avocado leafs reduce the beating action of rain drops which in-turn minimize the soil erosion. The soil enrichment by adding the leaf litter continuously is an advantage in the coffee plantations. It yields in the additional economic returns after three to five years of establishment. Hence, the establishment of shade tree under coffee ecosystem will give additional income to the coffee growers, which mainly helps on lean period of coffee cultivation.
Hericium erinaceum (Bull.: Fr.) Pers. is an edible fungus of great significance in medicine. It is rarely found in Europe, in contrast, it is common in Japan and North America. Its fruitbodies have been well-known for hundreds of years in traditional Chinese medicine and cuisine. A cradle of H. erinaceum cultivation is Asia. In Eastern Europe is rare in natural habitats, but can be successfully cultivated. Both fruitbodies and mycelia are rich in active, health promoting substances. Tests of substances extracted from this mushroom carried out on animals and in vitro have given good results. They can be used in the treatment of cancer, hepatic disorders, Alzheimer’s and Parkinson’s diseases, wound healing. They improve cognitive abilities, support the nervous and immune systems. Promising results have been reported in clinical trials and case reports about the human treatment (e.g., recovery from schizophrenia, an improvement of the quality of sleep, alleviation of the menopause symptoms). The subject of this paper is to summarize information about the development of mycelium, the best conditions for cultivation of fruitbodies, bioactive substances and their use in medicine.
Paeonia ostii is known for its excellent medicinal values as Chinese traditional plant. To date, the diversity of culturable endophytes associated with P. ostii is in its initial phase of exploration. In this study, 56 endophytic bacteria and 51 endophytic fungi were isolated from P. ostii roots in China. Subsequent characterization of 56 bacterial strains by 16S rDNA gene sequence analysis revealed that nine families and 13 different genera were represented. All the fungal strains were classed into six families and 12 genera based on ITS gene sequence. The biosynthetic potential of all the endophytes was further investigated by the detection of putative polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) genes. The PCR screens were successful in targeting thirteen bacterial PKS, five bacterial NRPS, ten fungal PKS and nine fungal NRPS gene fragments. Bioinformatic analysis of these detected endophyte gene fragments facilitated inference of the potential bioactivity of endophyte bioactive products, suggesting that the isolated endophytes are capable of producing a plethora of secondary metabolites. These results suggest that endophytes isolated from P. ostii had abundant population diversity and biosynthetic potential, which further proved that endophytes are valuable reservoirs of novel bioactive compounds.
6
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Chaenomeles – health promoting benefits

86%
Chaenomeles is a genus of deciduous spiny in the family of Rosaceae (Pomoideae subfamily). For centuries, the plant was used for a treatment of anemia, rheumatism, gout and cardiovascular diseases. The chemical composition studies of Chaenomeles showed the presence of many biologically active compounds, such as: phenolic compounds, organic acids, terpenoids, alcohols, ketones or aldehydes. Fruit of Chaenomeles has the largest applying potential due to extensive use of medicinal and high concentration of vitamin C. Recent in vivo and in vitro studies suggest that Chaenomeles fruit can help in the healing process of diabetes, tumor, allergies and liver diseases. Futhermore the plant has many positive qualities, like: hepatoprotective effect, anti-inflammatory properties, antioxidant action, antimicrobial and neuroprotective effect. Chaenomeles fruit may promote the growth of beneficial intestinal microflora and contribute to the regulation of body weight. The aim of this review was to summarize the information and data on the chemical composition and therapeutic properties of Chaenomeles.
7
86%
Ayurveda, whispered to be the ancient practice of healthcare existed and contributes a holistic approach to health, healing and longevity. Terminalia chebula Retz. is a popular plant and widely spread all over southern Asia. T. chebula is a native plant of India and its dried fruit is extensively used in various types of home remedies. Dried fruit of T. chebula contains high quantities phenolic compounds that consist of ellagic acid, gallic acid and chebulic acid. The fruit extract of T. chebula is known to display different biological properties like anticancer, anti-inflammatory, antioxidant, anti-protozoal, antimicrobial, hepato and renal protective activities, and in the management of metabolic syndrome. The phenolic active compounds might play vital role in the influence of biological activity. Fruit extract of T. chebula is widely employed as an important ingredient in various ayurvedic preparations like ‘Triphala’. This formulation is beneficial as detoxifying agent of the colon, purgative in chronic constipation, aids in digestion and as a body rejuvenator. The fruit has great medicinal significance and conventionally applied for the management of various illness conditions, such as sore throat, high cough, asthma, ulcers, gout, heart burn, vomiting, diarrhea, dysentery, bleeding piles and bladder diseases. It is also utilized as mild laxative, antispasmodic and stomachic. Because of these enormous medicinal properties, T. chebula is commonly termed as ‘King of Medicine’ in Tibet and can be called as a ‘wonder herb’. In the present review, recent advances in medicinal properties of T. chebula are discussed.
Twinflower (Linnaea borealis L.) is a widespread circumboreal plant species belonging to Linnaeaceae family (previously Caprifoliaceae). L. borealis commonly grows in taiga and tundra. In some countries in Europe, including Poland, twinflower is protected as a glacial relict. Chemical composition of this species is not well known, however in folk medicine of Scandinavian countries, L. borealis has a long tradition as a cure for skin diseases and rheumatism. It is suggested that twinflower has potential medicinal properties. The new study on lead secondary metabolites responsible for biological activity are necessary. This short review summarizes very sparse knowledge on twinflower: its biology, distribution, conservation status, chemical constituents, and describes the role of this plant in folk tradition of Scandinavian countries.
Jasminum auriculatum belonging to the family Oleaceae are reported to have good medicinal values in traditional system of medicines. The present study deals with pharmacognostical examination of morphological and microscopical characters and phytochemical investigations of Jasminum auriculatum leaves including determination of loss on drying, ash values and extractive values. The preliminary phytochemical screening of powdered drug was also carried out, the qualitative chemical examinations revealed the presence of various phytoconstituents like alkaloids, steroids, terpenoids, saponins, carbohydrates, Glycosides, protein, mucilages, phenols ,tannins and flavonoids.
Nothapodytes nimmoniana (J. Graham) (Icacinaceae), commonly known as Amruta is found in India particularly in Maharashtra, Goa, Kerala, Assam, Jammu and Kashmir as well as Tamilnadu areas. It is an important medicinal plant, the major source of a potent alkaloid, namely camptothecin, of a wide spectrum of pharmacological activities like anti-cancer, anti-HIV, antimalarial, antibacterial, anti-oxidant, anti-inflammatory, anti-fungal and also applied in the treatment of anaemia. Camptothecin is still not synthesized, therefore, its production entirely depends on natural sources. N. nimmoniana is one such plant which yields contain camptothecin in significantly high amount. The plant is gaining international recognition due to its diversified medicinal uses. It is subjected to excessive harvest. It has been categorized as a vulnerable and endangered plant. The present review encompasses the phytochemical, analytical, pharmacological, biotechnological, and other specific aspects of N. nimmoniana.
Cussonia barteri Seem (Araliaceae) is a deciduous tree growing in savannah of Africa. Ethnomedicinally, it is used in Africa as an analgesic, anti-malarial, anti-inflammatory, anti-anaemic, anti-diarhoea, anti-poison, ani-pyschotic and anti-epileptic agent. This review provides a brief summary on the phytochemical screenings, ethnomedicinal and pharmacological applications of various parts of C. barteri. Leaves, stem bark and seed of C. barteri have been shown to be rich in saponins, flavonoids, phenols, sugars and alkaloids. Some of these constituents have been isolated and elucidated from C. barteri. Several compounds isolated from plant include triterpenes, saponins, polyenyne and quinic esters. Phytochemical constituents are also partly responsible for biological activities of C. barteri. Extracts and components isolated from the plant have demonstrated neuropharmacological, anti-larvicidal, anti-microbial, anti-inflammatory and antioxidant activities. Overall, the insights provided by this review reinforce the potential of C. barteri for drug development and create the need for further scientific probe of constituents of the plant with the aim of developing novel drug candidates.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 4 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.