Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  mechanical injury
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Plants under attack of herbivores can emit increased amounts of volatile compounds from their leaves. Similarly, mechanically-injured plants can emit volatile chemicals that differ both quantitatively and qualitatively from undamaged plants. In this experiment, mechanical injury increased the release of the secondary metabolites linalool (3,7-dimethyl-1,6-octadien-3-ol) and linalool oxide (5-ethenyltetrahydro-2-furanmethanol) by wheat plants. The amounts released varied significantly with injury type and the period of time after injury. The time interval for the volatile collection within the photophase also influenced the amount collected for each day. The increased emission of these compounds, as a result of injury, may be explained as a defense mechanism against wounding. The role of these plant volatiles can be further investigated in the context of plant response to mechanical injury, within the broader context of all types of injury
Traumatic brain injury (TBI) is a major cause of mortality and morbidity in children and young adults. It initiates multiple cascades of events that lead to acute metabolic dysfunction and cellular energy crisis. TBI remains one of the most common and important causes of acquired epilepsy nowadays. The ketogenic diet (KD) is a specialized high-fat low-protein and low-carbohydrate diet which mimics the anticonvulsive effects of fasting, which were known to suppress seizures. KD is used primarily in children with seizures refractory to standard anticonvulsive drugs (AEDs). Many studies on the anticonvulsant effects of a KD have been performed. Unfortunately, the mechanism of action of the ketogenic diet remains unclear. Although the ketogenic diet is the best dietary therapy for epilepsy, there are other possible approaches including overall restriction of caloric intake. Dietary restriction seems a promising alternative to classic ketogenic diet, possibly because it is associated with higher levels of ketone bodies, which are themselves neuroprotective. Caloric restriction (CR) is defined as a decrease in energy intake without lowering nutritional value. CR improves behavioral outcomes after ischemic brain injury in rats and could possibly act as a neuroprotective factor in global ischemia. It has been also shown that chronic administration of CR may provide protection in the event of TBI. The aim of this research was to study the changes in susceptibility to pilocarpine-induced epileptic seizures in rats with mechanical brain injury. In 30-day-old male Wistar rats (P30), mechanical brain injury was performed. Immediately after, the calorically unrestricted ketogenic diet (KD) and calorically restricted standard laboratory rat chow diet (CR) were introduced. In order to check how the ketogenic diet and caloric restriction alone influence the epileptic seizure susceptibility, two groups of 30-day-old rats were fed KD and CR untill postnatal day 60. At that time, seizures were induced by pilocarpine injection. During the following 6-h period, the animals were continuously observed and motor seizures intensity were rated on a 6-point scale. We have found that KD, both alone or administered to animals with history of experimental brain injury, significantly increases the maximum intensity of pilocarpine-induced seizures, compared to CR fed healthy and injured controls, respectively. Surprisingly, KD and CR seem to have opposite effects in healthy animals as well as animals with a history of experimental brain injury. We have found that KD increases the maximum intensity of pilocarpine-induced seizures, compared to both calorically restricted and unrestricted normal diets. CR, on the other hand, decreases the seizure-genic effect of pilocarpine. This results in a continuum in which calorically restricted animals exhibit the weakest, and KD-fed animals the strongest seizures. To our knowledge, the effects of calorically-restricted and ketogenic diets on pilocarpine-induced seizures have not been previously studied. In other well established models of epilepsy, KD either attenuates or has little effect on seizure intensity.
The studies were conducted in 2005-2007 in Lithuanian University of Agriculture. The purpose of research was to establish the influence of mechanical injury of potato tubers on their quality. The experiment showed that during storage some chemical-physiological features had been changing constantly. The potatoes for research were grown under usual conditions in Vokė Branch Station (Lithuanian Institute of Agriculture) in Vilnius region in 2005-2007. For seven months (from September to April) potato tubers were stored in KX-Ю freezing chambers: 5-6°C, relative humidity - 90-95%. The studied samples of potatoes were stored in polythene bags of 120 µ thickness. General and natural weight losses were determined in 2 repetitions, two times: before storing and after seven months of storage. The analyses were carried out using standard methods: dry matter, saccharide content (reducing sugar and saccharose) and store losses of the mass. A suitable laboratorial bruising equipment was used (Fig. 1). The studied potato tubers were bruising from: 10 cm, 15 cm, 20 cm and 100 cm high. Research results showed that after 7 months of storage, all mechanically injured tubers demonstrated the lower content of dry matter as compared to the control sample. Tubers bruised from 100 cm height featured the highest losses of dry matter, whereas the lowest losses were characteristic for tubers bruised from 15 cm height. Tubers injured mechanically from 100 cm height and stored for 7 months demonstrated the greatest mass losses, whereas tubers bruised from 15 cm height featured the lowest mass losses.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.