Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 18

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  lysosome
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Investigated was the effect of intraperitoneal injections (twice daily for seven consecutive days) of reduced glutathione (GSH) on activity of selected lysosomal hydrolases (alanine aminopeptidase, leucine aminopeptidase, cathepsins D and L, acid phosphatase and N-acetyl-β-D-glucosaminidase) in lysosomal, microsomal and cytosol fractions of mouse kidney. Most notable effect of exogenous GSH on the activity of the enzymes considered was observed in lysosomal, while the least in microsomal fraction. After a series of GSH injections the activity of enzymes increased significantly mainly In lysosomal fraction. It is assumed that the increase in activity of lysosomal enzymes following the GSH injections results from a physiological response of renal cells to this antioxidant.
This work contains the results of studies on the influence of new lysosomotropic substances on an erythrocyte membrane. The compounds studied were hydrochlorides of N,N-dimethylglycine alkyl esters (DMG-n) and N,N-dimethylalanine alkyl esters (DMAL-n) having two different-length alkyl chains (n = 12 and 16), oxalates of dimethylaminoalaninates (DMALs -n; n = 8, 10, 12, 14 and 16) and methobromides of glycinates and alaninates (DMALM-12 and DMGM-12). They were found to hemolyze erythrocytes, to change their osmotic resistance and to influence erythrocyte membrane fluidity. The results obtained indicate that observed changes were dependent on lipophilicities of the compounds. It was especially evident in the case of hemolytic efficiencies of the homologous series of alanine oxalates. Also, DMG-n and DMAL-n compounds significantly differed in their hemolytic properties. Again, slightly better hemolytic efficiency of DMG compounds in comparison with corresponding compounds having the same alkyl chain, DMAL, confirm such a conclusion. However, their hemolytic efficiencies were found to be moderate, which makes them potentially useful membrane modifiers. That feature is important for lysosomotropic compounds and its confirmation was the primary aim of the presented work. It is worth mentioning that DMGM and DMALM compounds exhibited better hemolytic efficiencies than all other compounds studied – which is probably caused by the fact that they were used as bromides. Bromides are commonly found to be more active than compounds with other counterions.
Three acidic glycosidases: β-galactosidase (β-GAL, EC 3.2.1.23), α-neuraminidase (NEUR, sialidase, EC 3.2.1.18), N-acetylaminogalacto-6-sulfate sulfatase (GALNS, EC 3.1.6.4) and serine carboxypepidase cathepsin A (EC 3.4.16.1) form a functional high molecular weight complex in the lysosomes. The major constituent of this complex is cathepsin A, the so-called “lysosomal protective protein” (PPCA). By forming a multienzyme complex, it protects the glycosidases from rapid intralysosomal proteolysis, and it is also required for the intracellular sorting and proteolytic processing of their precursors. In man, a deficiency of cathepsin A leads to a combined deficiency of β-GAL and NEUR activities, called “galactosialidosis”. Multiple mutations identified in the cathepsin A gene are the molecular basis of this lysosomal storage disease. This review describes the structural organization of the lysosomal high molecular weight multienzyme complex and the importance of the protective protein/cathepsin A in physiology and pathology.
Cathepsin B is a lysosomal cysteine protease exhibiting mainly dipeptidyl carboxypeptidase activity, which decreases dramatically above pH 5.5, when the en­zyme starts acting as an endopeptidase. Since the common cathepsin B assays are performed at pH 6 and do not distinguish between these activities, we synthesized a series of peptide substrates specifically designed for the carboxydipeptidase activity of cathepsin B. The amino-acid sequences of the P5-P1 part of these substrates were based on the binding fragments of cystatin C and cystatin SA, the natural reversible inhibitors of papain-like cysteine protease. The sequences of the P'1-P'2 dipeptide fragments of the substrates were chosen on the basis of the specificity of the S'1-S'2 sites of the cathepsin B catalytic cleft. The rates of hydrolysis by cathepsin B and papain, the archetypal cysteine protease, were monitored by a continuous fluores­cence assay based on internal resonance energy transfer from an Edans to a Dabcyl group. The fluorescence energy donor and acceptor were attached to the C- and the N-terminal amino-acid residues, respectively. The kinetics of hydrolysis followed the Michaelis-Menten model. Out of all the examined peptides Dabcyl-R-L-V-G-FE(Edans) turned out to be a very good substrate for both papain and cathepsin B at both pH 6 and pH 5. The replacement of Glu by Asp turned this peptide into an exclusive substrate for cathepsin B not hydrolyzed by papain. The substitution of Phe by Nal in the original substrate caused an increase of the specificity constant for cathepsin B at pH 5, and a significant decrease at pH 6. The results of kinetic studies also suggest that Arg in position P4 is not important for the exopeptidase activity of cathepsin B, and that introducing Glu in place of Val in position P2 causes an increase of the substrate preference towards this activity.
18
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Muscle cathepsins of marine fish and invertebrates

44%
Muscle proteases are located mainly in the lysosomes, in the sarcoplasm, and in the extracellular matrix of the connective tissue surrounding each cell. The lysosomal proteases, cathepsins, have optimum activity in the acidic range, although many of them retain high activity also 1 or 2 pH units away from the optimum value. Among the cathepsins there are endopeptidases and exopeptidases. Most cathepsins hydrolyse several proteins of the myofibrils. The major protease of the lysosomes in fish and squid muscles is cathepsin D, an aspartyl endoproteinase. Although it is present in the muscle fibre itself, its generally rather low activity at low temperature limits its significance in tenderization of refrigerated fish of most species. Cathepsin L, a cysteinyl protease, is involved in autolysis and softening in matured chum salmon. Cathepsin B, a cysteinyl carboxypeptidase, is capable to attack also some myofibrillar proteins. Cathepsin A or carboxypeptidase A, and cathepsin C, a dipeptidyl hydrolase and dipeptidyl transferase, contribute to the hydrolysis of muscle proteins in a concerted action with the other cathepsins.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.