Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 33

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  hepatitis C virus
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The aim of this paper was to analyse the biochemical phenotypes of Candida albicans colonising the upper respiratory tract in 100 patients with chronic hepatitis C from group I (without antiviral therapy) and from group II (treated with peginterferon and ribavirin). The ability of the assimilation of carbon from various substrates (assimilation phenotypes) or activity of hydrolytic enzymes (biotypes) of 61 C. albicans isolates were estimated using API 20 C AUX and API ZYM microtests, respectively. Among 30 isolates of C. albicans from the group I, seven assimilation phenotypes and six biotypes were determined, while among 31 isolates from the group II - eleven assimilation phenotypes and five biotypes. The most frequently isolated assimilation phenotype in both groups of patients with API numerical profile of 2576174 comprised about 50%-70% of all phenotypes. The predominant biotype E belonging to the classification of Williamson comprised about 39%-50% of all biotypes. Our results and those from the literature suggest that C. albicans biotypes but not assimilation phenotypes may be related with some diseases. However, this requires further detailed studies.
Expression of single-chain variable fragment (scFv) antibodies on the surface of bacteriophage is widely used to prepare antibodies with pre-defined specificities. A phage antibody library containing the gene for scFv antibody against Hepatitis C virus core protein was panned with core protein immobilized on microtiter plate wells. After five rounds of panning 60 phage clones specific to core protein were obtained and one selected clone was sequenced. It was found that the specifically detected antigen consists of 774bp and is capable of encoding 257 amino acids in the patients but not in healthy persons.
Hepatitis C virus (HCV) is a causative agent of chronic liver disease leading tocirrhosis, liver failure and hepatocellular carcinoma. The prevalence of HCV is estimated as 3% of the world population and the virus is a major public health problem all over the world. For over 16 years, since HCV had been discovered, studies of the mechanisms of the viral life cycle and virus-host interactions have been hampered by the lack of a cell culture system allowing the virus to be grown in laboratory conditions. However, in recent years some new model systems to study HCV have been developed. The major breakthrough of the last two years was the cell culture system for maintaining the virus in an adapted hepatocyte-derived cell line. This review describes the techniques and applications of most of the in vitrosystems and animal models currently used for working with hepatitis C virus
Hepatitis C virus (HCV) is an enveloped, single-stranded RNA virus, belonging to the Flaviviridae family. HCV infection is a major cause of chronic hepatitis worldwide, leading to steatosis, liver cirrosis and hepatocellular carcinoma. Significant advances in understanding the mechanisms of HCV infection have been made since the development of a cell culture system reproducing the complete HCV cell cycle in vitro. HCV represents a new paradigm in interactions between the virus and its target cell, the human hepatocyte, due to the central role of lipoproteins in the HCV life cycle. Very low density lipoproteins are required for virus particle assembly and secretion. Upon the release, the infectious virus circulates in the blood as triglyceride-rich particles and infects cells using lipoprotein-receptor dependent mechanisms. HCV cell entry is a multi-step process: heparan sulphate and/or low-density lipoprotein receptor are cell surface factors mediating an initial virus attachment; subsequent virus interaction with tetraspanin CD81 and the human scavenger receptor SR-BI, the main HCV receptors, triggers virus movement to the tight junctions and its uptake via Claudin-1 and occludin. Another originality of HCV is that initiation of productive infection requires dynamic microtubules. Whereas other viruses use kinesin or dynein-dependent transport, HCV exploits mechanisms driven by microtubule polymerization to efficiently infect its target cell, in which virus nucleocapsid protein might play a particular role. An improved of understanding of the cellular-events involved in HCV cell entry and transport, leading to the initiation of productive HCV infection, may reveal novel targets for anti-viral interventions.
The non-structural protein 3 (NS3) of Hepatitis C virus (HCV) is a bifunctional enzyme with RNA-dependent NTPase/RNA helicase and serine protease activities, and thus represents a promising target for anti-HCV therapy. These functions are performed by two distinct moieties; the N-terminal protease domain and the C-terminal helicase domain that further folds into three structural subdomains. To obtain lower molecular mass proteins suitable for nuclear magnetic resonance studies of helicase-inhibitor complexes, helicase domains 1, 2, and 1+2 devoid of a hydrophobic β-loop were overexpressed and purified. Circular dichroism studies were carried out to confirm the secondary structure content and to determine thermodynamic parameters describing the stability of the proteins. Both thermal and GuHCl-induced unfolding experiments confirmed the multidomain organization of the helicase. The unfolding transition observed for domain 1+2 was in agreement with the model of two well-resolved successive steps corresponding to the independent unfolding of domains 1 and 2, respectively. In the case of the full-length helicase, the presence of domain 3 remarkably changed the transition profile, leading to fast and irreversible transformation of partially unfolded protein.
In the presented study the ribavirin-TP — an established inhibitor of the NTPase ac­tivity of the superfamily NTPase/helicases II — was investigated as an inhibitor of the unwinding activity of the hepatitis C virus (HCV) NTPase/helicase. The kinetics of the reaction revealed that ribavirin-TP reduces the turnover number of the helicase reac­tion by a mechanism that does not correspond to that of the inhibition of the NTPase activity. Our results suggest that derivatives of ribavirin-TP with enhanced stability towards hydrolytic attack may be effective inhibitors of the enzyme.
Hepatitis C virus (HCV) infection is an important cause of chronic hepatitis, cirrhosis, hepatocellular carcinoma and liver failure worldwide. Chronic hepatitis C virus infection is treated with interferon-alpha (IFN-alpha), pegylated interferon-alpha (PEG-IFNalpha) alone or in combination with ribavirin; however, a significant fraction of patients either fail to respond or relapse after cessation of therapy. Efforts to identify and develop highly specific and potent HCV inhibitors have intensified recently. Each of the virally encoded replication enzymes has been a focus of studies as well as viral receptors and the host immune system. This review summarizes recent progress in the search for novel anti-HCV agents.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.