Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 36

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  glutathione S-transferase
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
GST pi, the main glutathione S-transferase isoform present in the human brain, was isolated from various regions of the brain and the in vitro effect of tricyclic anti­depressants on its activity was studied. The results indicated that amitripyline and doxepin — derivatives of dibenzcycloheptadiene, as well as imipramine and clomipramine — derivatives of dibenzazepine, inhibit the activity of GST pi from frontal and parietal cortex, hippocampus and brain stem. All these tricyclics are non- competitive inhibitors of the enzyme with respect to reduced glutathione and non- competitive (amitripyline, doxepin) or uncompetitive (imipramine, clomipramine) with respect to the electrophilic substrate. Their inhibitory effect is reversible and it depends on the chemical structure of the tricyclic antidepressants rather than on the brain localization of the enzyme. We conclude that the interaction between GST pi and the drugs may reduce their availability in the brain and thus affect their therapeutic activity. On the other hand, tricyclic antidepressants may decrease the efficiency of the enzymatic barrier formed by GST and increase the exposure of brain to toxic electrophiles. Reactive electrophiles not inactivated by GST may contribute in adverse effects caused by these drugs.
An intracellular glutathione transferase was purified to homogenity from the fungus, Mucor mucedo, using DEAE-cellulose ion-exchange and glutathione affinity chromatography. Gel filtration chromatography and SDS-PAGE revealed that the purified GST is a homodimer with approximate native and subunit molecular mass of 53 kDa and 23.4 kDa, respectively. The enzyme has a pI value of 4.8, a pH optimum at pH 8.0 and apparent activation energy (Ea) of 1.42 kcal mol⁻¹. The purified GST acts readily on CDNB with almost negligible peroxidase activity and the activity was inhibited by Cibacron Blue (IC₅₀ 0.252 μM) and hematin (IC₅₀ 3.55 μM). M. mucedo GST displayed a non-Michaelian behavior. At Iow (0.1-0.3 mM) and high (0.3-2 mM) substrate concentration, Km(GSH) was calculated to be 0.179 and 0.65 mM, whereas Km(CDNB) was 0.531 and 11 mM and kcat was 39.8 and 552 s⁻¹, respectively. The enzyme showed apparent pKa values of 6-6.5 and 8.0.
Glutathione (GSH) plays a central role in the plant tolerance against the toxic effects of metals. It is a key antioxidant and acts as a cofactor for glutathione S-transferase (GST). The main objective of this study was to determine the Pb tolerance and bioaccumulation by Dodonaea viscosa (L.) Jacq. and their relation to GSH production and GST activity. The relationship between the Pb tolerance and bioaccumulation by D. viscosa and the effect of the exposure time on the GSH production or the GST activity was assessed in trials with perlite under different Pb treatments. D. viscosa showed a remarkable tolerance to Pb [half-inhibitory concentration (IC₅₀) = 2,797 mg kg⁻¹] and accumulated up to 11,428 mg Pb kg⁻¹ in dry roots with a limited translocation to shoots without any signs of phytotoxicity after 105 days of exposure. The stress caused by the fast Pb uptake rate (489 mg kg⁻¹ day⁻¹) during the first 10 days of exposure was strongly correlated to increased GSH contents (~1.3-fold) and GST activities (~3.6-fold) in both shoots and roots. The results indicate that the Pb stress triggered a defense mechanism that involved increased contents of GSH and GST activities, suggesting that both variables are involved in the tolerance of D. viscosa against Pb toxicity.
10
63%
Water is a renewable resource. However, with the human population growth, economic development and improved living standards, the world’s supply of fresh water is steadily decreasing and consequently water resources for agricultural production are limited and diminishing. Water deficiency is a significant problem in agriculture and increasing efforts are currently being made to understand plant tolerance mechanisms and to develop new tools (especially molecular) that could underpin plant breeding and cultivation. However, the biochemical and molecular mechanisms of plant water deficit tolerance are not fully understood, and the data available is incomplete. Here, we review the significance of glutathione and its related enzymes in plant responses to drought. Firstly, the roles of reduced glutathione and reduced/ oxidized glutathione ratio, are discussed, followed by an extensive discussion of glutathione related enzymes, which play an important role in plant responses to drought. Special attention is given to the S-glutathionylation of proteins, which is involved in cell metabolism regulation and redox signaling in photosynthetic organisms subjected to abiotic stress. The review concludes with a brief overview of future perspectives for the involvement of glutathione and related enzymes in drought stress responses.
Technical methods of purification of large areas of low and medium pollution are powerful, but extremely difficult to apply on a wide scale. This is due to high costs and the need to have specialised equipment during remediation. Phytoremediation is a much less complicated method. This environment cleaning technology uses the above-average capacity of some plant species to accumulate (socalled hyper-accumulation) or metabolise toxic chemicals. Soil microorganisms living in the rhizosphere also play an invaluable role in the degradation of harm-ful organic compounds; they are often much more involved in the mineralisation of xenobiotics than plants. Since plants provide favourable conditions for soil microorganisms to live – specific cooperation between them is possible. This kind of relationship can be useful in very effective removal of many toxic organic compounds, such as pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons and other petroleum compounds, from the soil. Although this process is relatively slow compared to other methods, its low invasiveness and economic considerations make it worthwhile. Currently, attempts at improvement of the natural process of phytoremediation using genetic engineering are undertaken more and more often. Among other things, genes encoding cytochromes from other organisms are implanted into the plant genome. This idea is constantly being developed and the results of research that is more and more widely conducted in this are promising.
Glutathione-S-transferase (GST) a Phase-II drug detoxification enzyme, was detected in Setaria cervi, a bovine filarial parasite. In vitro effect of diethylcarbamazine, butylated hydroxyanisole and phenobarbitone on the GST of adult female S. cervi was assayed by the addition of these compounds in the maintenance medium. The specific activity of GST towards 1-chloro-2,4-dinitrobenzene was increased progressively 1.2–1.97, 1.3–2.4 and 1.2–2.7 times at 10–100 µM of diethylcarbamazine, butylated hydroxyanisole and phenobarbitone, respectively, after 5 h at 37oC. Substrate specificity studies showed a higher increase in specific activity with ethacrynic acid and no change with cumene hydroperoxide. Although the intensity of GST activity band was more in extract from diethylcarbamazine or butylated hydroxyanisole treated worms extract, an extra band of activity appeared in those worm extracts compared to control worm extract. SDS/PAGE showed increased thickness of the band corresponding to purified GST in extracts from diethylcarbamazine/butylated hydroxyanisole/phenobarbitone treated worms. Purification and quantification of GST from diethylcarbamazine and butylated hydroxyanisole treated worms indicated an increase in enzyme specific activity. The increase in GST protein by these agents was blocked by prior treatment with actinomycin D, indicative of a transcription dependent response. The role of this enzyme in motility and viability of microfilariae and adult female was tested in vitro using a range of known GST inhibitors. Of those tested, ethacrynic acid, ellagic acid, 1-chloro-2,4-dinitrobenzene, cibacron blue and butylated hydroxyanisole reduced the viability and motility of microfilariae and adult female worms at micromolar concentrations. These results suggest that S. cervi GST is inducible in response to the antifilarial drug diethylcarbamazine and may play an important role in parasite’s survival, thus could be a potential drug target.
Two Schistosoma mansoni cDNA clones 30S and 1H were identified by immuno- screening of sporocyst 2gt11 library and by random sequencing of clones from 2Zap libraries, respectively. Clone 30S was one of 30 clones identified by an antibody raised against tegument of 3-h schistosomules. The clone was found to encode an 81 amino-acid protein fragment. It was expressed in Escherichia coli as a fusion protein of calculated molecular mass of about 35 kDa with C-terminus of Schistosoma japonicum glutathione-S-transferase (Sj26; about 26 kDa). The recombinant fusion protein was specifically recognized by serum of rabbits immunized with irradiated cercariae. Clone 1H is one of 76 expressed sequence tags derived from an adult worm library. It encodes the complete sequence of a tegumental membrane protein, Sm13. The 104 amino-acid open reading frame encodes a protein with a calculated molecular mass of about 11.9 kDa. Clone 1H was expressed in E. coli as an insoluble fusion pro­tein with Sj26 of about 40 kDa. In Western blots, the fusion protein was recognized by serum from rabbits vaccinated with irradiated cercariae but not by preimmune rabbit sera. The cloning, characterization and expression of those proteins are therefore po­tentially usefull for vaccine development.
Male Wistar rats received orally a solution of cadmium chloride at a dose corresponding to 10 mg of cadmium/kg of diet. Rats were killed at 7, 14, 21 and 28 days of cadmium administration and 7 days postdosing. Results showed that the cadmium intoxication affected renal and hepatic glutathione content and superoxide dismutase in a dose-dependent manner. Changes in glutathione S-transferase activity produced by repeated exposure to cadmium give an alternating pattern of increases and decreases in the response to each subsequent exposure. It may be suggested that the response of glutathione S-transferase depends on the duration of exposure to cadmium. No clear relationship between glutathione content and glutathione S-transferase was found.
Research in our laboratory has focused on the analysis of the functions of a variety of enzymes that are involved in the scavenging of reactive oxygen intermediates (ROI) such as superoxide radicals (·O⁻₂ ) and hydrogen peroxide (H₂O₂). Recent work has been on transgenic plants that over-express glutathione S-transferases (GST) that also have glutathione peroxidase activity. Transgenic tobacco plants that contain gene constructs that encode two different tobacco GST’s had elevated levels of both GST and GPX activity. Analysis of mature vegetative transgenic tobacco plants that over-express GST/GPX failed to show any increase in paraquat tolerance or protection from photooxidative stress. However, seeds of these GST/GPX-expressing tobacco lines are capable of more rapid germination and seedling growth at low temperatures and at elevated salt concentrations. Reduced levels of lipid peroxidation were noted in GST/GPX-expressing seedling compared to control seedlings under both stressful and non-stressful conditions. In addition, GST/GPX-expressing seedlings significantly accumulated more oxidized glutathione (GSSG) than control seedlings during stress. These characteristics clearly indicate that over-expression of GST/GPX in transgenic seedlings can have substantial effects on their stress tolerance. Furthermore, it appears that this effect is due primarily to the elevated levels of GPX activity.
The activity of glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione S-transferase (GST) was investigated in liver and kidney of rats exposed to cadmium (Cd) and ethanol (EtOH) alone and in combination. Rats were treated with 50 mg Cd/dm3 in drinking water and/or 5 g of EtOH/kg body wt/24 h intragastrically, for 12 weeks. Exposure to Cd led to an increase in GPx and GST activity with a simultaneous decrease in GR activity in the liver. In the kidney of rats treated with Cd, an increase in the activity of GPx and GR was noted. In the EtOH-exposed rats, GPx activity decreased in the liver, but increased in the kidney. Exposure to EtOH caused a reduction in GR activity only in the liver. The co-exposure to Cd and EtOH led to an increase in the liver and kidney GPx activity compared to control. In the rats simultaneously exposed to Cd and EtOH liver activity of GR decreased compared to control, whereas the kidney GR activity increased compared to control as well as to the groups treated with Cd and EtOH seperately. The co-exposure to Cd and EtOH led to an increase in the liver activity of GST compared to the control and EtOH groups. Analysis of variance (ANOVA/MANOVA) revealed that the changes noted in the activity of investigated enzymes in the Cd + EtOH group resulted from the independent action of both Cd or EtOH as well as from their interactive ac­tion. Numerous correlations (negative or positive) were noted between the activity of GPx, GR and GST, and the concentration of GSH, Cd and MDA in the liver and kidney. On the basis of our results it can be concluded that changes in the activity of GPx, GR and GST in the liver and kidney may be involved in the mechanism leading to a decrease in GSH concentration in these organs due to exposure to Cd and EtOH alone and in conjunction with each other.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.