Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 41

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  cyclophosphamide
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Angiogenesis, i.e. formation of new blood vessels out of pre-existing capillaries, is essential to the development of tumour vasculature. The discovery of specific antiangiogenic inhibitors has important therapeutic implications for the development of novel cancer treatments. Vasostatin, the N-terminal domain of calreticulin, is a potent endogenous inhibitor of angiogenesis and tumour growth. In our study, using B16(F10) murine melanoma model and electroporation we attempted intramuscular transfer of human vasostatin gene. The gene therapy was combined with antiangiogenic drug dosing schedule of a known chemotherapeutic (cyclophosphamide). The combination of vasostatin gene therapy and cyclophosphamide administration improved therapeutic effects in melanoma tumours. We observed both significant inhibition of tumour growth and extended survival of treated mice. To our knowledge, this is one of the first reports showing antitumour efficacy of electroporation-mediated vasostatin gene therapy combined with antiangiogenic chemotherapy.
One of the preconditions of effective anticancer therapy is efficient transfer of the therapeutic agent (chemotherapeutic) to tumor cells. Fundamental barriers making drug delivery and action difficult include underoxygenation, elevated interstitial pressure, poor and abnormal tumor blood vascular network and acidic tumor milieu. In this study we aimed at developing an optimized scheme of administering a combination of an angiogenesis-inhibiting drug (vasostatin) and a chemotherapeutic (cyclophosphamide) in the therapeutic treatment of mice bearing experimental B16-F10 melanoma tumors. We report that the strongest tumor growth inhibition was observed in mice that received two, three or four vasostatin doses in combination with one injection of cyclophosphamide (i.e., V2 + CTX, V3 + CTX or V4 + CTX schemes). Double administration of vasostatin increases oxygenation of B16-F10 tumors. On the other hand, its five-fold administration lowers tumor oxygenation, breaks down tumor vascular network (increasing hypoxia) and leads in consequence to death of cancer cells and appearance of necrotic areas in the tumor. A decreased cyclophosphamide dose in combination with two doses of vasostatin (V2 + CTX scheme) inhibits tumor growth similarly to a larger dose of cyclophosphamide alone.
The aim of the study was to assess the effects of tamoxifen and cyclophosphamide on the selected cell-mediated immunity parameters in dogs. The study included 18 dogs aged 5-10 years. The experimental group consisted of 12 animals with neoplastic lesions classified as the first or second staging group (according to the WHO TMN classification). This group was divided into two subgroups: I - six dogs receiving oral tamoxifen, and II - six dogs with cyclophosphamide administered orally. The control group included six healthy dogs. The blood was sampled from the saphenous access vein two times at 14-d intervals before the drug administration, three times every 7 d during administration, and two times every 14 d after completion of the therapy. The basic blood tests were carried out and the subpopulations of TCD4+ and TCD8+ lymphocytes, and phagocytic activity of granulocytes and monocytes were determined using flow cytometry. It was found that tamoxifen induced a marked increase in WBC and neutrophil counts, increased phagocytic activity of monocytes, and changed the CD4+:CD8+ ratio (in favour of cytotoxic lymphocyte subpopulation). These findings indicated the stimulation of cell-mediated immunity mechanisms. Cyclophosphamide caused a substantial decrease in the overall leukocyte pool and reduced the percentage of cells activated for phagocytosis, both neutrophils and monocytes even after completion of its administration, which proves its immunosuppressive effects.
Highly concentrated urine may induce a harmful effect on the urinary bladder. Therefore, we considered osmolarity of the urine as a basic pathomechanism of mucosal damage. The influence of both cyclophosphamide (CYP) and hyperosmolar stimuli (HS) on the urothelium are not well described. The purpose was to evaluate the effect of CYP and HS on rat urothelial cultured cells (RUCC). 15 Wistar rats were used for RUCC preparation. RUCC were exposed to HS (2080 and 3222 mOsm/l NaCl) for 15 min and CYP (1 mg/ml) for 4 hrs. APC-labelled annexin V was used to quantitatively determine the percentage of apoptotic cells and propidium iodide (PI) as a standard flow cytometric viability probe to distinguish necrotic cells from viable ones. Annexin V-APC (+), annexin V-APC and PI (+), and PI (+) cells were analysed as apoptotic, dead, and necrotic cells, respectively. The results were presented in percentage values. The flow cytometric analysis was done on a FACSCalibur Flow Cytometer using Cell-Quest software. Treatment with 2080 and 3222 mOsm/l HS resulted in 23.7 ± 3.9% and 26.0 ± 1.5% apoptotic cells, respectively, 14.3 ± 1.4% and 19.4 ± 2.7% necrotic cells, respectively and 60.5 ± 1.4% and 48.6 ± 5.3% dead cells, respectively. The effect of CYP on RUCC was similar to the effect of HS. After CYP the apoptotic and necrotic cells were 23.1 ± 0.3% and 17.9 ± 7.4%, respectively. The percentage of dead cells was 57.7 ± 10.8%. CYP and HS induced apoptosis and necrosis in RUCC. 3222 mOsm/l HS had the most harmful effect based on the percentage of necrotic and apoptotic cells.
A novel fluorimetric assay, allowing independent measurement of the activities of two principal cytosolic forms of human aldehyde dehydrogenase, ALDH-1 and ALDH-3 (known as a tumour-associated ALDH) was applied to estimate the activities of these isoenzymes in human liver and thyroid tumours. The assay is based on two artificial substrates, 6-methoxy-2-naphthaldehyde (MONAL-62) and 7-methoxy-1-naphthaldehyde (MONAL-71), exhibiting excellent substrate properties toward various forms of human ALDH (see Wierzchowski et al., 1997, Anal. Biochem. 245, 69-78). We have found significant differences in ALDH activities between malignant and non-malignant tissue fragments, particularly in cancerous livers. Out of 16 tumours examined, only 4 exhibited ALDH-1 activities comparable to that found in the tumour-free tissue (0.5-2.5 U/g), while in the remaining 12 this activity was at least 10-fold lower. The ALDH-3 activity was detectable in about 40% of both tumour and tumour-free liver samples (maximum value 1.5 U/g). Comparison of 13 pathological thyroid fragments revealed ALDH activities in the range of 0.02 to 0.35 U/g, with two malignant samples showing activities of 0.27 and 0.18 U/g. Both substrate specificity and kinetic behaviour of the thyroid ALDH (Km values for the fluorogenic naphthaldehydes as well as propanal inhibition profile) were similar to those of the purified ALDH-1. In 5 thyroid samples traces of ALDH-3 activity was detected, using MONAL-62 and NADP+ as substrates (maximum value 0.04 U/g). Possible prognostic value of the foregoing measurements for cyclophosphamide chemotherapy is discussed.
Growth of tumors is strongly dependent upon supply of nutrients and oxygen by de novo formed blood vessels. Inhibiting angiogenesis suppresses growth of primary tumors as well and affects development of metastases. We demonstrate that recombinant MBP/vasostatin fusion protein inhibits proliferation of endothelial cells in vitro. The therapeutic usefulness of such intratumorally delivered recombinant protein was then assessed by investigating its ability to inhibit growth of experimental murine melanomas. In the model of B16-F10 melanoma the MBP/vasostatin construct significantly delayed tumor growth and prolonged survival of treated mice. A combination therapy involving MBP/vasostatin construct and cyclophosphamide was even more effective and led to further inhibition of the tumor growth and extended survival. We show that such combination might be useful in the clinical setting, especially to treat tumors which have already formed microvessel networks.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.