Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 162

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 9 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  biological control
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 9 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Chemical control of weeds in some environments and due to the condition and degree of weed-growth does not bring expected results. For that reason alternative methods have been searched for. Biological control of weeds has been traditionally perceived as reducing the agrophage population to such a level where they do not constitute a threat. In the present research, an attempt has been made to introduce Aglais urticae L. to control the population of Parietaria pensylvanica M. ex. Willd.
The experimental materials comprised the fruits of tomato cv. Robin F1 and red pepper cv. Mira harvested from plants sprayed three times with the growth regulator Asahi SL, the biostimulator Biochikol 020 PC, the biocontrol agent Polyversum, and the fungicide Bravo 500 SC. Control plants were sprayed with sterile water. Total fruit yield, average fruit weight, and the concentrations of total extract, pectin, reducing sugars, carotenoids, and phenolic compounds were determined. Biological and fungicidal control contributed to an increase in the yield and average weight of tomato and pepper fruit. The protective treatments had no effect on the content of extract and reducing sugars in tomato and red pepper fruit. The applied biological and fungicidal control agents were negatively correlated with the concentrations of carotenoids and phenolic compounds in tomato fruit, and positively with the pectin content of tomato and red pepper fruit.
The study was aimed at selecting species and strains of entomopathogenic nematodes to be used in practical control of the housefly in stables, which should provide welfare of bred animals. Test insect, the housefly, and entomopathogenic nematodes of the family Steinernematidae and Heterorhabditidae were used in experiments. Laboratory strains of nematodes and those commercially available in Poland and in Europe were used in performed tests. Larvae, pupae and imagines of M. domestica were cultivated in the Institute of Organic Industry in Warsaw. Four groups were created for each nematode species. Not all nematode species and strains were equally pathogenic to houseflies.
Trichoderma is one of the most exploited biocontrol agents for the management of plant diseases. In biocontrol ecology, the critical factors are detection, and the monitoring and recovery of specific biocontrol agents either naturally present or deliberately released into the environment. Protoplast fusion is an appropriate tool for the improvement of biocontrol Trichoderma strains. Protoplast isolation from Trichoderma harzianum was achieved using 24 h culture age, 6.6 mg/ml Novazym L 1412 at 30°C which resulted the maximum protoplast yield of 5 × 108/ml. The self-fused protoplasts were regenerated and 12 fusants were selected based on their growth rate on 2% colloidal chitin medium. Next, a comparison was done for chitinase and antagonistic activity. Transcriptomic analysis based on quantitative real-time RT-PCR, demonstrated that T8-05 fusant expressed 1.5 fold of chit42 transcript as compared with the parental line. This fusant with 7.02±0.15U chitinase activity showed a higher growth inhibition rate (100%) than the parent strain, against Rhizoctonia solani. To obtain a genetically marked fusant that can be used as a biomonitor, the fusant was cotransformed with the gfp and amdS genes. The morphology and viability of selected cotransformant (FT8-7MK-05-2) was similar to the parent. Green fluorescing conidia were observed within the first 2 days of incubation in the soil, and this was followed by the formation of chlamydopores after 60 days. The colonisation of the gfp-tagged fusant was also monitored visually on R. solani sclerotia by scanning electron microscopy. Production of gfp-tagged fusant of Trichoderma spp. provides a potentially useful tool for monitoring hyphal growth patterns and the population of biocontrol agent isolates introduced into environmental systems.
This paper presents results of a study focused on using the increased predation pressure of avian raptors for biocontrol of local populations of the common vole (Microtus arvalis) in Haná (Czech Republic), a region of traditional agriculture in central Europe. Five raptor perches per hectare were installed on fields (total number of perches installed per year was 625) during two vole outbreaks in 2005/2006 and 2009/2010. The importance of the installed perches for the abundance of raptors during both outbreaks was evaluated based on the overall raptor counting along a transect. The results imply that supporting aggregations of raptors on agricultural arable land by means of installed artificial perches can increase the predation pressure on M. arvalis at the onset and during its population outbreaks. The density of raptors was low in fields without installed perches, although the local vole population was reaching its peak densities (2100 active burrows per hectare). In contrast, the density of raptors in fields with installed perches was markedly high. The results showed that the cost of biological control applied to agricultural land with an ongoing vole outbreak may sum up to approx. 50% of the rodenticide application costs (with equal efficiencies of both methods reducing the common vole abundance below the economic injury level).
Siderophore production is an important mechanism of biological control by a number of strains of plant growth-promoting rhizobacteria. Pseudomonas fluorescens UTPF5 was originally obtained from onion field. Biochemical and physiological characteristics of this strain refer to biovar 3 of P. fluorescens. Strain UTPF5 is an effective bacterium against several phytopathogenic fungi. Pyoverdine type siderophore of this strain was isolated using XAD amberlite column. The plant growth promotion and antifungal properties of bacteria were demonstrated under greenhouse conditions in combination with Fe-EDTA, Fe-EDDHA and Zn as modulators of pyoverdine production. Amendment with zinc, Fe-EDTA and Fe-EDDHA suppressed the disease inhibition when partially used with UTPF5. 7NSK2 and its pyoverdine mutant, MPFM1, were used as reference strains the inhibition percent of which was not affect by soil amendment. Iron chelates, especially Fe-EDDHA, increased growth and chlorophyll production by plants. This effect was improved in the presence of bacterial strains. The siderophore mutant MPFM1 did not exhibit satisfactory disease inhibition and growth promotion activity. In vitro experiments showed that purified pyoverdine could decrease the fungal growth to the same extent as pyoverdine-producing strain.
Due to the importance of the biological control of plant diseases, testing and introducing new biocontrol-active microorganisms is a major concern among plant pathologists. The causal agent of cotton seedling damping-off disease is Rhizoctonia solani. In this regard, we tried to investigate the antagonistic activities of Pseudomonas aureofaciens (chlororaphis) 30–84 (phenazine producing wild type and non-phenazine producing mutant) strains on R. solani, in comparison with some isolates of P. fluorescent under both in vitro (laboratory) and in vivo (greenhouse) conditions. In the laboratory experiment, the inhibitory effects of all the bacteria, on the growth of R. solani, were evaluated using the dual culture procedure. Results showed that five isolates of P. fluorescent along with both strains of P. aureofaciens significantly inhibited the growth of R. solani. Effective bacterial antagonists were then evaluated in a greenhouse experiment where cotton seeds were coated with their suspensions and were sown in pasteurised field-soil. The soil had been pre-inoculated with a virulent isolate of R. solani. The efficacy of the bacterial antagonists was evaluated by counting the number of surviving seedlings in different treatments, at 15 and 60 days after sowing, for determining pre- and post-emergence damping-off incidence. According to the results of the greenhouse experiment, at both intervals, two isolates of P. fluorescens along with both strains of P. aureofaciens caused significant increases in the number of healthy seedlings, in comparison with the untreated control, and a commonly used fungicide (carboxin-thiram). The efficacy of phenazine producing a wild type strain of P. aureofaciens was higher than its non-phenazine producing mutant, indicating that phenazine plays an important role in the antagonistic activity of P. aureofaciens. Effective bacterial antagonists were then studied for their antagonistic mechanisms. The results showed that all four bacteria employed different mechanisms. The bacteria produced siderophore, and volatile metabolites and non-volatile metabolites, in their antagonistic activities. The results of this study suggest that P. auerofaciens may be a new biocontrol agent for controlling cotton seedling mortality disease.
In this study, about 112 isolates of Streptomyces were isolated from chickpea rhizospheric soils. Among the isolated strains, five showed strong inhibitory effects against chickpea Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris in vitro using plate assay and selected for further studies. The selected strains were identified as Streptomyces spp. based on morphological and biochemical characterization as well as 16S rDNA sequences analysis. Our results assigned them to strains related to genus of Streptomyces. In vitro, antagonistic effects of Streptomyces strains against the disease were evaluated through the dual-culture method, volatile and non-volatile metabolites, siderophore, protease and chitinase production. All bacterial strains inhibited mycelial growth of the pathogen ranging from 26 to 44.2% in dual culture assay. The non-volatile extract of five of the Streptomyces strains inhibited more than 50% growth of the pathogen, whereas volatile compounds were less effective on mycelial growth inhibition (20.2 to 33.4%). The ability of the biocontrol agents to produce siderophore and protease were varied, whereas, production of chitinase was detected for all strains. Results of the greenhouse assay indicated that all biocontrol agents reduced disease severity (ranging from 38.7 to 54.8%). Accordingly, strain KS62 showed higher control efficacy (54.8%). In addition, the biomass of chickpea plants (plant height and dry weight) significantly increased in plants treated with Streptomyces strains compared to non-bacterized control. The results of this study showed that it may be possible to manage chickpea Fusarium wilt disease effectively by using Streptomyces species, as biocontrol agents. Therefore, evaluating their efficiency under field conditions is needed.
Bacteriophages are an attractive tool for application in the therapy of bacterial infections, for biological control of bacterial contamination of foodstuffs in the alimentary industry, in plant protection, for control of water-borne pathogens, and control of environmental microflora. This review is mainly focused on structures governing phage recognition of host cell and mechanisms of phage adsorption and penetration into microbial cell.
11
86%
The epidemiological and epizootic importance of ticks has been known for a few decades since of the discovery of their role as vectors of many new diseases, and the better detection of those already known. Given the durability of chemical preparations in the environment and the increasing problem of developing tick resistance, natural strategies for biological control are sought. A promising alternative to chemical pesticides is the use of entomopathogenic organisms for effective integrated pest management of low environmental impact. A number of promising microbes have been identified during the search for effective means of controlling the tick population, but the knowledge about the impact of these pathogens on the environment and other non-target organisms is still insufficient. Previous research has still not provided a definite answer about the safety of their use. It is known, however, that the chemicals which are currently used have a negative impact on the environment and/or cause resistance. No efficient biocompound has yet been devised for commercial use. Potential microorganisms for tick biocontrol (mainly bacteria and fungi) are natural tick pathogens, living in the same environment. With their adhesive properties, and their ability to digest the cuticle, they may constitute an appropriate ingredient of bioacaricides. Until now, fungal insecticides have been used only to control crop pests.
The morphological characterization was carried out for 5 isolates of Trichoderma harzianum and 7 isolates of Trichoderma viride and tested for their biocontrol efficacy. The isolates belonging to T.harzianum were analogous in colony colour, culture smell, mycelial colour, conidiation, conidial shape, conidial wall and conidial colour. Correspondingly the isolates of T.viride showed certain similarity in colony colour, colony edge, culture smell, conidiophore branching, conidial wall, conidial colour and chlamydospores. Inter specific differences through cluster analysis based on morphological characters grouped the twelve isolates into three major clusters where all the isolates of T.harzianum formed a single cluster while the isolates of T.viride were bifurcated into two groups. The clustering was substantiated by similarity index which showed maximum similarity among T.harzianum isolates with only less than 20% variation among themselves. Similarly the clusters having isolates of T.viride also had less variation within them. The biocontrol efficacy of these twelve isolates of Trichoderma was experimented by dual culture test under laboratory condition and there existed some relation between the biocontrol efficacy of these isolates and morphology.
Nine rhizobial strains isolated from the root nodules of Cicer arietinum, Vigna radiata, V. mungo, Samania saman, Sesbania sesban, Leucinia sp., Prosopis cineraria and Medicago sativa were used to study their effects on root-infecting fungi viz., Macrophomina phaseolina, Fusarium u solani and Rhizoctonia solani. In dual culture plale assay, strains of Brudyrhizobium sp., and R. meliloti were found to inhibit radial growth of M. phaseolina. F. solani and R. soluni producing zones of inhibition, Brudyrhizobium sp., and R. meliloti either used as seed dressing or as soil drench significantly suppressed root-rot infection caused by M. phaseolina, F. solani and R. solani in okra, a non-leguminous crop under greenhouse conditions. Biomass of plants was also higher in the presence of rhizobia.
The studies on biological control of damson-hop aphid (Phorodon humuli Schrank) on Marynka cultivar, using Aphidius colemani and Aphidoletes aphidimyza, were carried out in the hop-garden localised within Hop Experimental Station at Jastków over the years 1998–2000. The efficacy of Aphidius colemani ranged from 5% to 65% and was found sufficient to control damson-hop aphid in the period before flowering i.e. to the middle of July, but it was not sufficient later. The efficacy of Aphidoletes aphidimyza ranged from 50% to above 90% and it was sufficient in one of the examined vegetation seasons. High air temperature and lack of rainfall reduced efficacy of both species, but especially that of Aphidius colemani.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 9 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.