Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 58

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  anticancer drug
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The main goal of the study was to determine whether hypoxia augments the toxicity of anticancer drugs towards cardiomyocytes. Drugs selected for this experiment were those that disturb the cardiac redox equilibrium. Cardiomyocytes were incubated for 24 h with doxorubicin, tirapazamine, and 5-fluorouracil, each at three doses, under normoxia and under 50% and 90% hypoxia. The cytotoxic effect was evaluated on the basis of the percentage of living cells, cell vitality (assessed by the MTT assay), and morphology. In addition, the oxidative marker and pH value were determined. Varied protective effects of hypoxia on cell morphology were observed in all cases except the medium concentration of tirapazamine. The 50% hypoxia prevented the toxic effects of all tested drugs. The 90% hypoxia, on the other hand, was effective against the cytotoxic action of doxorubicin and 5-fluoruracil, but the cytotoxicity of tirapazamine increased. It was found that under the 90% hypoxia the oxidative stress observed under normoxia and the 50% hypoxia was greatly reduced. The study revealed that the above drugs did not activate anaerobic glycolysis.
TNP-470 is an acknowledged anti-angiogenic factor, and was studied clinically as an anti-cancer drug. We previously reported on an additional property of this molecule: the intracellular generation of reactive oxygen species in B16F10 melanoma cells. We showed that a massive generation of ROS occurred in the first few hours after treatment with TNP-470 and that this event was critical to subsequent cell death. In this study, we analyzed the process of cell death and noticed an atypical pattern of death markers. Some of these, such as DNA fragmentation or condensation of chromatin, were characteristic for programmed cell death, while others (the lack of phosphatidylserine flip-flop but permeability to propidium iodide, the maintenance of adhesion to the substratum, no change in mitochondrial transmembrane potential, no effect of the panspecific caspase inhibitor) rather suggested a necrotic outcome. We concluded that TNP-470 induced at least some pathways of programmed cell death. However, increasing damage to critical cell functions appears to cause a rapid switch into the necrotic mode. Our data is similar to that in other reports describing the action of ROS-generating agents. We hypothesize that this rapid programmed cell death/necrosis switch is a common scenario following free radical stress.
 Paclitaxel (PAC) is an anticancer drug used for treatments of breast, ovarian and lung cancers. However, little data is; available in the literature on its potential genotoxicity on healthy human cells. On the other hand, boron deficiency and supplementation exert important biological effects in human and animal tissues. The biological effects of dietary boron are defined, but its interaction with PAC is not known for therapeutic uses. The aim of the present study was to determine whether boric acid (BA) confer a protection against PAC genotoxicity. After the application of PAC (10 or 20 μg/l) and BA (2.5 or 5 mg/l), the genotoxic effects were assessed by sister chromatid exchange (SCE) and micronucleus (MN) tests in human blood cultures. We also analyzed nuclear division index (NDI) in peripheral lymphocytes. Our results showed that PAC significantly (P < 0.05) increased the frequencies of SCEs and the formations of MNs in peripheral lymphocytes as compared to controls. PAC decreased the nuclear division index in lymphocyte cultures. Boric acid did not show cytotoxic or genotoxic effects at the concentrations tested. Furthermore, the PAC-induced increases in the genotoxicity and cytotoxicity indices were diminished by the addition of BA. The present study suggests for the first time that BA can prevent the genotoxicity of PAC on human lymphocytes.
STI571 (imatinib mesylate; Gleevec®) is an inhibitor that targets the tyrosine kinase activity of Bcr-Abl present in chronic myelogenous leukemia (CML) cells. Some preclinical studies have demonstrated that the combination of STI571 with chemotherapeutic drugs results in enhanced toxicity in Bcr-Abl-positive leukemias. We investigated the potential benefit of using STI571 to down-regulate Bcr-Abl activity for the enhancement of doxorubicin anti-proliferative action in K562 cell line derived from blast crisis of CML. At low concentrations of both drugs (40 nM doxorubicin combined with STI571 in the range of 100–150 nM), the antiproliferative effects were mainly due to cellular differentiation as assessed by benzidine staining for hemoglobin synthesis level and real-time PCR for γ-globin expression. Higher concentrations of STI571 used in combinations with doxorubicin caused mainly apoptosis as shown by DNA degradation and nuclear fragmentation visualized by fluorescence microscopy after DAPI staining, changes in cell morphology observed after Giemza-May Grünwald staining and cellular membrane organization estimated by flow cytometry after Annexin V staining. As compared with either drug alone, cotreatment with STI571 and DOX induced stronger cellular responses. A low concentration of STI571 in combination with a low concentration of DOX might be tested as an alternative approach to increasing the efficacy of chemotherapy against CML
Cisplatin and doxorubicin are widely used anticancer drugs that cause DNA damage, which activates the ATM-Chk2-p53 pathway in cancer cells. This activation leads to cell cycle block or apoptosis, depending on the nature of the DNA damage. In an attempt to enhance the effects of these agents, we inhibited ATM/ATR and Chk2, which are known upstream regulators of p53. The cancer cell lines A2780 and ARN8, bearing the wild-type p53 protein, were used to study changes in p53 activation and trans-activation. Our results suggest that the G1-checkpoint, normally activated by DNA damage, is functionally overcome by the action of kinase inhibitors that sensitize cells to apoptosis. Both inhibitors show these effects, albeit with variable intensity in different cell lines, which is promising for other studies and theoretically for use in clinical practice.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.