Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 422

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 22 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Saccharomyces cerevisiae
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 22 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Drożdże Saccharomyces cerevisiae „malt whiskey", utylizujące maltotriozę i maltotetrozę, poddano fuzji z RD mutantami drożdży gorzelniczych Saccharomyces cerevisiae D43 i winiarskich Saccharomyces bayanus w celu poprawy ich zdolności fermentacyjnych. W stosunku do szczepu Saccharomyces cerevisiae „malt whiskey " fuzanty G i J uzyskały większą wydajność konwersji glukozy i maltozy do etanolu oraz charakteryzowały się lepszym stanem fizjologicznym komórek po fermentacji. Fuzant G odznaczał się najlepszą dynamiką fermentacji oraz wydajnością etanolu w środowisku zawierającym glukozę, zaś fuzant J - w środowisku zawierającym maltozę.
The objective of the study was to optimize ergosterol production by Saccharomyces cerevisiae in continuous and fed-batch cultures. Use was made of three optimization criteria: ergosterol yield related to the mass unit of the substrate supplied to the fermenter, and two criteria proposed for the purpose of the study, both incorporating (in addition to ergosterol yield) ergosterol content in yeast cells and proportion of ergosterol in the total ∆ 5,7-sterols content. In both culture types, specific growth rate was found to affect the content of ∆5,7-sterols in the yeast cells. In continuous culture, three of them (ergosterol, dehydroergosterol, and unidentified sterol) reached their maximum at the dilution rate of 0.74, 0.102 and 0.131 h-1, respectively. For ergosterol and for the unidentified sterol, these were the dilution rates at which ethanol content in the culture medium began to increase. Dihydroergosterol content was an increasing function of dilution rate. In the fed-batch culture with purely oxidative assimilation of glucose, ∆5,7- sterols content in yeast cells (except that of dehydroergosterol) increased with increasing specific growth rate. Optimization carried out with the three objective functions mentioned above showed that they reached their maxima at essentially the same argument values - both in continuous and fed-batch cultures. This indicates that the ergosterol yield criterion can be substituted for the two, more sophisticated, optimization criteria. The optimum dilution rate for continuous culture was 0.13 h-1, and the optimum time of fed-batch culture ranged between 6 and 8 h.
The mitochondrial DNA (mtDNA) polymerase was isolated from a protease-deficient yeast strain (PY2), and purified about 3000 fold by a column chromatography on phosphocellulose, heparin-agarose, and single-stranded DNA cellulose. The purified polymerase was characterized with respect to optimal nucleotide concentration, template-primer specificity and sensitivity to some inhibitors. These results were compared with the nuclear DNA polymerase I activity. Both polymerases showed similar requirement of deoxynucleotide concentrations (Km < 1 uM), and highest activity with poly(dA-dT) template. However, the mtDNA polymerase was more sensitive to ddTTP, EtBr and Mn2+ inhibition in comparison to the nuclear DNA polymerase I. The mtDNA polymerase did not need ATP as an energy source for in vitro DNA synthesis. This mtDNA polymerase preparation also showed 3' -> 5' exonudease activity.
By functional complementation of a PDR 5 (pleiotropic drug resistance) null mutant of S. cerevisiae, we have recently cloned and sequenced a multidrug resistance gene CDR1 (Candida Drug Resistance). Transformation by CDR1 of a PDR 5 disrupted host hypersensitive to cycloheximide and chloramphenicol resulted in resistance to these as well as other unrelated drugs. The nucleotide sequence of CDR 1 revealed that, like PDR 5, it encodes a putative membrane pump belonging to the ABC superfamily. CDR 1 encodes a protein of 169.9 kDa whose predicted structural organisation is characte­rised by two homologous halves, each comprising a hydrophobic region, with a set of six transmembrane stretches, preceded by a hydrophilic binding fold. We now have evidence to suggest that there are several PDR homologues present in C. albicans which display multidrug resistance and a collateral sensitivity pattern different from PDR 5 and CDR 1. The functions of such genes and their products in the overall physiology of C. albicans is not yet established.
Quinacrine was used to visualize the intracellular pH changes in the yeast strain Saccharomyces cerevisiae RXII occurring after exposure to four recently-synthesized lysosomotropic drugs: DM-11, PY-11, PYG-12s and DMAL-12s. The cells took up quinacrine, mostly accumulating it in their vacuoles. DM-11 and PY-11 gave rise to diffuse quinacrine fluorescence throughout the cells, with the vacuoles staining to a somewhat greater extent than the cytosol. This quinacrine-detected overall acidification of the cell interior is very probably caused by blocking of plasma membrane H+-ATPase. PYG-12s gave rise to a strong vacuolar accumulation of the dye. Like the vacuolar ATPase inhibitor bafilomycin A1, DMAL-12s strongly lowered the intensity of quinacrine fluorescence. Owing to its low pKa, it can penetrate rapidly into the cells and may inhibit vacuolar H+-ATPase and prevent quinacrine-detectable vacuolar acidification without causing strong cell acidification. Since these drugs were found to penetrate into the cells, their lack of effect may reflect a higher resistance of both plasma membrane H+-ATPase and vacuolar ATPase to the drugs. Our data indicate that the lysosomotropic drugs under study have a dual action. On entering the cell, they cause intracellular acidification, very probably by inhibiting plasma membrane H+-ATPase and curtailing active proton pumping from the cells. Furthermore, they interfere with the function of V-type ATPase, causing vacuolar alkalinization and eventually cell death.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 22 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.