Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 24

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Ganoderma lucidum
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Demand for Ganoderma lucidum basidiocarps on the global market is increased due to its numerous health benefits. As they are rare in nature and traditional cultivation on logs is not ecologically and economically justified method, current trend is finding of good alternative substrate for production. Whether wheat straw, the most abundant crop residue in Europe, could be a novel substrate for G. lucidum cultivation was the question which led to the definition of the goals. Two wild and one commercial strains were objects of the study. Despite some morphological differences among basidiocarps, all strains belong to G. lucidum sensu stricto, which was confirmed by analyses of ITS, tef1-a and rpb2 gene sequences. Wheat straw showed as a good substrate, namely the periods required for the complete colonisation of wheat straw by mycelium as well as the formation of primordia and basidiocarps were relatively short. The totally fresh and dry yield and biological efficiency were also significant. If it is taken into consideration that untreated wheat straw was used, validities of its introduction in industrial-scale G. lucidum cultivation can be demonstrated.
Black alder is an important forest−forming species in Poland. Its wood is decomposed by many species of fungi. Ganoderma lucidum (Curtis) P. Karst. is a species of Basidiomycetes which belongs to family Ganodermataceae, order Polyporales. This fungus causes white rot decay of wood in dead and sometimes living alder trees. G. lucidum has been under partial protection in Poland since 2014. It is also red−listed as a rare species (category R – taxa with small populations) on the ‘Red list of the macrofungi in Poland’. The fungus was cut out with a sizeable fragment of wood from the alder stump in Łuków Forest District (eastern Poland) and transported to the laboratory of the Department of Mycology and Forest Phytopathology, Warsaw University of Life Sciences−SGGW. Pure culture of G. lucidum mycelium was obtained from a fragment of fruitbody. The aim of this study was to investigate, through laboratory decay tests, the ability of G. lucidum to degrade alder wood. Sterilization of wood samples (30×20×20 mm) consisted of placing the material in an accelerator and irradiating it with high−energy electrons at a dose of 30 kGy at the Institute of Nuclear Chemistry and Technology in Warsaw. On the next day, wood samples were put into 200 ml flasks with mycelium of G. lucidum on agar−wort medium (2 samples per flask). The flasks were placed in a Heraeus BK 600 incubator for 180 days, with a constant temperature of 22°C and humidity of 80 ±5%. Every 30 days 10 flasks were randomly selected, i.e. 20 samples of alder wood from this experiment. After each incubation period the samples were removed from the flasks, cleaned to remove mycelia and dried at a temperature of 105°C until they reached constant weight. By comparing mass of the samples at the start and the end of experiment in an absolutely dry state, the relative wood mass loss was calculated. After exposure times 180 days, the relative weight loss of alder wood as a result of decay by G. lucidum mycelium was on average 10.88%. The rate of the decay was almost constant during the study period. On some alder wood samples structures resembling fruitbodies of G. lucidum were noticed.
Quantitative determination of polysaccharides in Ganoderma lucidum fruit bodies from different sawdust cultivation substrates and their antibacterial activity was done. Thirty six samples were analyzed. Four strains of Ganoderma lucidum (GL01, GL02, GL03 and GL04) were cultivated on the growth substrates of three different sawdust types: birch (Bo), maple (Kl) or alder (Ol) amended with wheat bran in three different concentrations: 10, 20 and 30% (w/w). Even though the richest in polysaccharides was GL01 strain, the highest yields of the polysaccharides were determined in GL04Kl3 sample and was 112.82 mg/g of dry weight. The antibacterial activity of polysaccharides was determined in vitro using micro-dilution broth method. The panel of eight reference bacterial strains was used. All the polysaccharide samples tested showed the broad spectrum and the moderate antibacterial activity. Micrococcus luteus ATCC 10240 strain was the most sensitive with MIC (minimal inhibitory concentration) = 0.63 − 1.25 mg/mL.
The evaluation of glycosyl composition is an essential step to guide future research designs applied in bioactivity. In the same way, the unexplored potential bioactivity of exopolysaccharide from Ganoderma lucidum is huge. Therefore, this study investigated the glycosyl composition of the exopolysaccharide isolated from submerged fermentation of G. lucidum to serve as guide for future studies on bioactivity. Glycosyl content and composition were evaluated by combined GC/ MS of the TMS derivatives of the monosaccharide methyl glycosides produced from the sample by acidic methanolysis. Glycosyl composition analysis showed that the dominant carbohydrate component in all samples of exopolysaccharide isolated from submerged fermentation of G. lucidum CG 144 was glucose (58.1%), mannose (26.6%) and galactose (12.5%) which can be referred to as heteroglycan. These results suggest that this Ganoderma exopolysaccharide may be a new immunomodulatory agent.
Basal Stem Rot (BSR) disease caused by Ganoderma lucidum (Leys) Karst, is the most destructive disease and a major constraint in coconut production. Fifty five endophytic strains of bacteria were isolated from coconut roots of different regions. Among the isolates, EPC5 (Endophytes coconut), EPC8, EPC15, EPC29, EPC52 and Pfl (Plant growth promoting rhizobacteria) promoted the rice seedling growth in roll towel and pot culture method. EPC5 (Plant growth promoting endophytic bacteria), Pf1 and Trichoderma viride (Plant growth promoting fungus) effectively inhibited the G. lucidum growth in vitro. When bioagents along with farm yard manure (FYM) were heaped for different days interval the population was increased in twenty days both in sterilized and unsterilized conditions.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.