Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 12

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Together with the extraction of first insect antimicrobial protein (AMP) from the pupae of the giant silk moths Hyalophora cecropia the antibacterial activity of insects was observed for the first time in 1980. Practically, AMPs are small, cationic proteins that exhibit activity against bacteria, fungi as well as certain parasites and viruses. It is known that in addition to their antimicrobial effect, they boost host specific innate immune responses and exert selective immunomodulatory effects involved in angiogenesis and wound healing. More than 1,500 proteins with antimicrobial activity have been identified in different organisms, including plants, fungi, bacteria and animals. Insects are a primary source of AMPs which are considered as not resulting in the development of natural bacterial resistance. In general, they are characterized as heat-stable with no adverse effects on eukaryotic cells. These characteristics contribute to the potential use of these proteins in human and veterinary medicine and in animal nutrition. Depending on their mode of action, insect AMPs may be applied as single peptides, as a complex of different AMPs and as an active fraction of insect proteins in the nutrition of different livestock. The great potential for the use of AMPs in animal production is primarily associated with the growing problem of antibiotics resistance, which has triggered the search for alternatives to antibiotics in livestock production. The review presents the current knowledge of insect AMPs, their chemical structure and mode of action with focus on their potential use in agriculture and livestock production.
Marek’s disease is a viral disease, a type of poultry cancer. It is caused by MDV serotype 1 (Marek’s disease virus, MDV) viruses, also referred to as Gallid herpesvirus 2 belonging to the family Herpesviridae. The complete, fully infectious virus particles are present in the feathers and the nodules months can survive in the environment for many months. The use of isothermal amplification methods of genetic material (Loop-Mediated Isothermal Amplification, LAMP) virus MDV enables rapid and precise identification of the virus in difficult diagnostic material, including dust. By optimizing the reaction conditions and using at least two pairs of primers which bind to specific sites in the genome of the virus, this technique has high sensitivity and specificity. The technique makes it possible to detect of single copies of the meq oncogene – a unique region of DNA of the first type of virus MDV.
The rise in the Muslim population with the economic disability of Muslim countries have made the term halal common all around the world. The lack of information about halal in non-Muslim countries has made the status of imported halal products uncertain for Muslim countries. Halal meat is the most critical product due to the precise rules and requirements needed. In this review, we attempt to explain the types of halal and haram animals as well as the requirements needed for the allowed animals to be halal. Muslims must follow the halal rules mentioned in the Quran, Sunna and doctrines (scholars). The halal animals have been categorized with special and essential slaughtering requirements. However, the slaughtering should be performed in accordance with Islamic rules. The application of animal stunning has been allowed in some Islamic countries since the animal is still alive at the time of slaughtering with respect to animal welfare. Moreover, halal meat loses its halalness as soon as it becomes contaminated with najis (unclean). Indeed, it is important to understand the requirements of halal food, which cover religious aspects.
The aim of this study was to evaluate the effect of full-fat insect meals fed ‘on top’ to broiler chickens on their performance and the microbiota composition in the gastrointestinal tract. A total of 1850 day-old Ross 308 females were used in a set of four independent experiments. The insects Gryllodes sigillatus, Shelfordella lateralis, Gryllus assimilis, Tenebrio molitor and Hermetia illucens were applied in amounts that varied from 0.05 to 0.2%. In general, the application of insect meals to the diets of broilers did not affect their growth performance over the experimental period. However, the 0.2% additions of T. molitor and H. illucens increased feed intake at days 15–35 (P = 0.011) and the entire period of feeding (days 1–35; P = 0.018) (Experiment 3). Moreover, in Experiment 4 the supplementation of 0.2% of S. lateralis improved body weight gain (days 11–21 and 1–21), feed intake (days 1–10 and 1–21) and feed conversion ratio (days 1–21). The addition of insect meals reduced the pH value of digesta in the crop (Experiments 1 and 2) and in the caeca (Experiment 2). Supplementation with H. illucens caused the most significant effect on the microbiota populations in the crop, ileum and caeca (Experiment 3). However, at the higher levels of S. lateralis addition to the diets of broilers, the counts of selected microbiota in the crop and ileum increased (Experiment 4). These results indicate that the application of the insect full-fat meals in relatively small amounts can affect the microbiota composition in the gastrointestinal tract of broiler chickens.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.