Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Kinesins are molecular motors that transport various cargoes along microtubule tracks using energy derived from ATP hydrolysis. Although the motor domains of kinesins are structurally similar, the family contains members that move on microtubules in opposite directions. Recent biochemical and biophysical studies of several kinesins make it possible to identify structural elements responsible for the different directionality, suggesting that reversal of the motor movement can be achieved through small, local changes in the protein structure.
The axon is a slender projection of a neuron that conducts electrical impulses to synapses in muscles or other neurons. A number of cellular components such as mitochondria and vesicles are transported along the axon by microtubule-based molecular motors (kinesins and dyneins). The most important factors controlling the axonal transport are the structure and function of the motors involved and the condition of the rails (the microtubule, MT). In the last decade, a compelling evidence has been provided that MTs contain marks (posttranslational modifications, PTMs) that indicate what kind of activity should take place in a given MT segment. These cues are read and interpreted by molecular motors, MAPS and other proteins. Kinesin-1, the major motor that transports cargoes along MTs is a homodimer with a pair of MT-binding sites on each end of the molecule. In some conditions, kinesin-1, besides interacting with MT using its N-terminal motor domains, can also bind another MT by its tail site producing sliding of one MT relative to another. This type of pair sliding can be used to sort MTs in the same way it occurs in the mitotic spindle and also act as an efficient way to move large amounts of tubulin, in the form of short MTs. Both activities have been observed in Drosophila cultured neurons. The effects of PTMs on the interaction of the motor domain with MT are to some extent characterized, but the effects of PTMs in the cargo-MT on the MT pair sliding have never been examined. Currently, we are exploring the impact of two well-known PTMs (detyrosination and polyglutamylation) and one recently reported (polyamination) on MT-MT sliding. To that end, we have developed an assay in which the sliding is observed in vitro and quantified by kymographic analysis. Surprisingly, the velocity of the sliding was highly variable along the track indicating that its efficiency may be sensitive to many cellular and developmental mechanisms. FINANCIAL SUPPORT: Supported in part by NCN Grant 2014/13/B/NZ1/03995.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.