Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 14

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Flavonoids and isoflavonoids are secondary metabolites in plants. With the goal of obtaining isoflavonoids from a wide range of plants, a few key studies have proven that isoflavonoids can be produced in non-leguminous plants by transgenic engineering. Many earlier studies investigate genistein biosynthesis in leaves and petals of isoflavone synthase (IFS) transgenic tobacco. However, most reports do not attempt to analyze quantification of genistein or do not check the presence of genistein in transgenic plant roots. In addition, little is known about the influence of genistein on arbuscular mycorrhiza (AM). In this paper, we reported that genistein was obtained from transgenic IFS tobacco roots. In addition, we revealed that endogenous genistein and 10 µg g⁻¹ exogenous genistein enhanced the development of AM symbiosis. We also revealed the relative expression levels of pertinent genes during the development of AM symbiosis. Our results suggest that genistein plays a positive role in the development of AM symbiosis in tobacco roots.
Background: Tumor microenvironment, in particular the stroma, plays an important role in breast cancer cell invasion and metastasis. Investigation of the molecular characteristics of breast cancer stroma may reveal targets for future study. Methods: The transcriptome profiles of breast cancer stroma and normal breast stroma were compared to identify differentially expressed genes (DEGs). The method was analysis of GSE26910 and GSE10797 datasets. Common DEGs were identified and then analyses of enriched pathways and hub genes were performed. Results: A total of 146 DEGs were common to GSE26910 and GSE10797. The enriched pathways were associated with “extracellular matrix (ECM) organization”, “ECM-receptor interaction” and “focal adhesion”. Network analysis identified six key genes, including JUN, FOS, ATF3, STAT1, COL1A1 and FN1. Notably, COL1A1 and FN1 were identified for the first time as cancer stromal key genes associated with breast cancer invasion and metastasis. Oncome analysis showed that the high expression levels of COL1A1 and FN1 correlated to an advanced stage of breast cancer and poor clinical outcomes. Conclusions: We found that several conserved tumor stromal genes might regulate breast cancer invasion through ECM remodeling. The clinical outcome analyses of COL1A1 and FN1 suggest these two genes are promising targets for future studies.
SYMRK is a plant receptor-like kinase with a role in root endosymbiosis. Heterologous expression of SYMRK from non-legumes can complement the loss-offunction effects of the mutant symrk in legumes. However, it is unclear whether the development of arbuscular mycorrhiza (AM) is affected along with the enhanced expression of SYMRK. In the present study, the full-length LsSYMRK gene was cloned from Lathyrus sativus. Overexpression of LsSYMRK in tobacco roots was essential for AM development, and affected the expression of genes which are involved in the potential signaling pathway of AM. In addition, the pattern of hyphal penetration changed from radial to longitudinal when hyphae reached the root cortex. Furthermore, overexpression of LsSYMRK increased tobacco biomass in the presence of AM fungi. These results suggest that increased expression of SYMRK in roots of AM-infected tobacco can increase the colonization and biomass.
Severe acute pancreatitis (SAP) is a common disease with a poor prognosis. Heart failure is one cause of SAP patient death. Intermedin (IMD) is a potent endogenous cardio-protective substance. Administration of exogenous IMD showed beneficial effects in cardiovascular diseases. The aim of this study was to investigate the myocardial damage in SAP and to determine the therapeutic potential of IMD for SAP. Using an SAP rat model, we examined endogenous IMD expression following SAP induction, and determined the effect of IMD on myocardial function, histological morphology, apoptosis-related gene expression, and prognosis. Our results indicated that the cardiac function and histological structure were significantly disrupted in SAP rats. Infusion of exogenous IMD significantly preserved cardiac function and ameliorated myocardial damage. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) revealed that myocardial apoptosis was extensively present in SAP rats, and IMD infusion led to increased expression of the prosurvival factor Bcl-2, but decreased pro-apoptotic factors Bax and caspase-3. In addition, IMD infusion also reversed the change of IMD receptor systems in SAP rat heart tissue. Furthermore, we found that IMD infusion greatly decreased mortality of SAP rats. In conclusion, administration of SAP produced therapeutic effects in SAP through modulating apoptotic and pro-survival gene expression, inhibiting myocardial apoptosis, preserving cardiac function, and a useful therapeutic agent for SAP, and provides us an insight for a clinical trial of IMD for treating human severe acute pancreatitis.
This study developed an attapulgite-activated carbon composite ceramisite (AACCC) biofilter for removing trace-level dibutyl phthalate (DBP) from micro-polluted drinking source water. Total pore area and average pore diameter of AACCC were estimated to be 112.2 m²/g and 19.8 nm, respectively, while the AACCC showed considerable adsorptive capacity due to its mesoporous structure, i.e., it would be used as an ideal filtration media. Although AACCC could adsorb DBP, biological AACCC covered by different types of microorganisms appeared to be more effective in removing DBP from source water. At a filtration velocity of 2 m/h during two influent concentrations (20 μg/L and 50 μg/L), the DBP removals in AACCC biofilter were higher than the AACCC filter, being 1.2 μg/L and 1.9 μg/L. The pseudo-first-order kinetic model can serve as a good method for estimating removal performance of DBP using an AACCC biofilter. This clearly demonstrated the potential of the AACCC biofilter as a cost-effective and high-efficiency process for removing trace-level DBP from drinking source water.
Wheat (Triticum aestivum L.) is one of the top three food crops in the world. Studies have revealed that wheat endosperm development undergoes programmed cell death (PCD) process development that may be influenced by PCD. Waterlogging and exogenous hydrogen peroxide (H₂O₂) treatment exacerbates wheat endosperm PCD, whereas PCD acceleration is significantly inhibited by reactive oxygen species (ROS) scavengers. To explore the physiological mechanism of waterlogging resistance in wheat, the effects of exogenous H₂O₂, ascorbic acid (AsA), and cyclosporin A (CsA) treatment on ROS content, antioxidant enzyme activity, release of cytochrome c, and caspase-like protease activity in the endosperm of Huamai 8 (waterlogging-tolerant wheat cultivar) and Huamai 9 (waterlogging-sensitive wheat cultivar) were studied. The results showed that exogenous H₂O₂ treatment resulted in an increase in ROS content, antioxidant enzyme activity, mitochondrial membrane permeability, release of cytochrome c, and caspase-like protease activity in the endosperms of both wheat cultivars, which eventually exacerbated PCD. Compared to Huamai 8, the increase in ROS content in Huamai 9 was more significant, whereas changes in antioxidant enzyme activity, cytochrome c release, mitochondrial membrane permeability, and caspase-like protease activity were smaller. Exogenous AsA treatment leads to the content of H₂O₂ and catalase activity decrease, which could inhibit endosperm cell death to some extent. CsA treatment effectively inhibited the increase in H₂O₂ content, antioxidant enzyme activity, release of cytochrome c, and caspase-like protease activity caused by exogenous H₂O₂ treatment, which in turn inhibited cell death. In summary, exogenous H₂O₂ treatment aggravates endosperm PCD, and Huamai 9 exhibited higher ROS accumulation and a weaker antioxidant enzyme system under external stress, which may be the mechanisms underlying its sensitivity to waterlogging. CsA effectively inhibited the increase in ROS, antioxidant enzyme activity, cytochrome c release, and cell death. It is possible that in wheat endosperm, mitochondria in a similar way to animal mitochondria release cytochrome c regulating PCD.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.