Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Plant community assembly is determined by species turnover and intraspecific trait variations (ITV) controlled by environment changes. However, little is known about how species turnover and ITV affect the responses of plant community to habitat changes and grazing disturbance in semiarid grasslands. Here, we measured five functional plant traits in four typical grassland habitats under fencing and grazing disturbance in a semiarid grassland, Northern China, including plant height, specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen content (LNC) and leaf carbon: nitrogen ratio (C:N). We also calculated the community weighted means (CWM) and non-weighted means (CM) of all traits and examined the relative roles of species turnover and ITV in affecting the responses of community traits to habitat changes and grazing disturbance. Our results showed that the CWM and CM values of five functional traits differed with grassland habitat changes. As compared to other grasslands, the Stipa steppe had the higher plant height, the sandy grassland had the higher SLA and lower LDMC, and the meadow had the lower LNC and higher C:N. Grazing decreased plant height across grassland habitats, as well as decreased SLA and increased LDMC in meadow. The responses of all community-level traits to habitat changes were driven by species turnover, while the responses of phenotypic traits (height, SLA and LDMC) to grazing were determined by both species turnover and ITV. So, we argue that ITV should be considered when understanding plant community assembly under grazing disturbance regime in semiarid grasslands.
Foliar nutrient resorption is an important strategy which allows leaf nutrients to be reused rather than lost with leaf fall, particularly in nutrient-poor ecosystems where even small nutrient losses can have significantly negative impacts on plant survival, competitive ability, and fitness. However, plants vary greatly in nitrogen (N) and phosphorus (P) resorption among plant growth forms during leaf senescence, which may be vital to understand the role of plant growth forms in ecosystem functioning. Green and senesced leaf N and P concentrations of 39 plant species in sandy grassland (Horqin Sand Land) of northern China were analyzed to detect variations of nutrient resorption efficiency among plant growth forms. The results showed that nitrogen resorption efficiency (NRE) ranged from 29% to 74%, with an average (± SD) of 50.3 ± 11.2%, and phosphorus resorption efficiency (PRE) varied among species between 46% and 82%, with a mean (± SD) of 68.4 ± 6.9%, suggesting that nutrient resorption is a vital nutrient conservation strategy in this ecosystem. In addition, NRE and PRE differed significantly among the dominant plant growth forms in this sandy grassland. NRE for N-fixing species and graminoids were significantly lower relative to NRE for shrubs and forbs, but mean PRE of graminoids was significantly higher than those of N fixers, shrubs and forbs. These data give indirect evidence that the differentiation of N and P conservation serve as an important mechanism permitting the co-existence of growth forms in arid systems.
Understanding composition, structure and spatial heterogeneity in soil seed banks is important for the management of grassland ecosystem. Although the effect of fencing and grazing on vegetation composition is widely known, information on species composition, seed density and spatial heterogeneity of soil seed banks in sandy grasslands under fencing and grazing is still lacking. We measured the species composition and seed density of soil seed banks in fenced grassland, grazed grassland and grazed shrubby grassland in Horqin Sand Land, Northern China. By applying the geostatistical methods, we assessed how fencing and grazing affected spatial heterogeneity of soil seed banks in sandy grasslands. Total seed density and species richness in soil seed banks were lower in fenced grassland than in either grazed grassland or grazed shrubby grassland. Seed density and species richness of annual species in soil seed banks were also lower in fenced grassland than in either grazed grassland or grazed shrubby grassland, while those of perennial species showed a reverse trend. The analysis of spatial autocorrelation ranges, fractal dimensions and distribution pattern maps from geostatistical methods showed that spatial heterogeneity of seed density and species richness in soil seed banks were also lower in fenced grassland than in either grazed grassland or grazed shrubby grassland. Continuous fencing increases the seed density and species richness of perennial species in soil seed banks, as well as results in a decrease in spatial heterogeneity of seed density and species richness in soil seed banks. So, continuous fencing should be considered to restore the degraded sandy grasslands in management of semiarid grassland ecosystems.
To understand physiological acclimation of psammophyte to repeated soil drought and rewatering, two psammophytes (Setaria viridis and Digitaria ciliaris) were subjected to three cycles of soil drought and rewatering. The response process of leaf relative water content (RWC), membrane permeability, lipid peroxidation, gas exchange characteristics, antioxidant enzymes, soluble protein, and free proline was examined. Leaf RWC, the net photosynthesis rate, stomatal conductance, and water use efficiency decreased, while membrane permeability, lipid peroxidation, intercellular CO₂ concentration, soluble protein, and free proline increased during three soil drought periods for both psammophytes. These physiological characteristics were recovered to the control levels following rewatering for 4 days. However, activities of SOD, CAT, and POD were induced continuously under soil drought conditions, and remained higher than those in the control throughout the whole experiment period, which agrees with our hypothesis that drought hardening activates defensive systems of both psammophytes continuously. Decreasing level of leaf RWC and increasing levels of leaf membrane permeability and lipid peroxidation were suppressed with increasing the number of drought cycles, suggesting that drought hardening alleviates damages of both psammophytes and improves their drought tolerance and acclimation to soil drought conditions in the future. Additionally, the photosynthesis decreased more slowly in the subsequent drought cycles than in the first cycle, allowing both psammophytes to maximize assimilation in response to repeated soil drought conditions. Thus, both psammophytes acclimatize themselves to repeated soil drought.
To assess nitrogen (N) resorption patterns in semi-arid sandy land, N concentrations in green leaves (Ng) and senesced leaves (Ns) of 35 species of shrubs and herbages were measured along habitats of decreasing soil total N (0.54 to 0.041 g g⁻¹ d.w. of top soil level) in Horqin Sandy Land (Inner Mongolia, China). These habitats are following: inter-dune grassland (IDG), fixed sand dune (FD), semi-fixed sand dune (SFD), semi-mobile sand dune (SMD), and mobile sand dune (MD) were considered. Results showed that Ng and Ns (i.e. nitrogen resorption proficiency, NRP) increased and leaf nitrogen use efficiency (NUE) decreased significantly with increasing soil N status across the above habitas, but nitrogen resorption efficiency (NRE) was not affected. The levels of Ng, Ns and NUE experience two stages across habitats: first, there were low Ng and Ns and high NUE in MD and SMD; second, there were high Ng and Ns and low NUE in IDG, FD and SFD. Plants from IDG, FD and SFD had incomplete N resorption during foliar senescence, but plants from MD and SMD had complete N resorption. Leaf NRE was determined by life forms which had no significant effect on Ng but on Ns and NUE. For all plants in the five habitats, NRE and NUE decreased with the sequence of grass, herb, shrub, while Ns showed a contrary tendency. Plants from strong N limitation habitats did not show higher NRE, but showed higher NRP and leaf NUE, so NRP was a more sensitive indicator of changes in N status than NRE. In conclusion, Leaf N resorption patterns were mainly determined by soil N status across habitats, and there were some consistent patterns among life forms.
Responses of plants exposed to drought and rewatering have been well documented; however, little is known concerning strategies of psammophyte to drought and rewatering under different soil nutrient regimes. For this study, Pennisetum centrasiaticum under two soil nutrient regimes was subjected to progressive drought and subsequent rewatering. Soil water status, gas exchange characteristics, chlorophyll a fluorescence characteristics as well as biomass traits were measured to investigate ecophysiological responses. Net photosynthesis rate (Pn), stomatal conductance (gs), water use efficiency, maximum quantum efficiency of photosynthesis system II (PSII, FV/ FM), electron transport flux per cross section (ET₀/CS₀), and performance index on cross section basis (PICS) were suppressed during drought periods for both nutrient regimes. Meanwhile, leaf intercellular CO₂ concentration (Ci), minimal fluorescence intensity (F₀), and dissipated energy flux per cross section (DI₀/CS₀) increased. Reversible downregulation of PSII photochemistry and enhanced thermal dissipation of excess excitation energy (DI₀/CS₀) contributed to enhanced photo-protection in drought-stressed plants. Thus, the results indicate that P. centrasiaticum is capable of withstanding and surviving extreme drought events, and the recovery pattern of stressed P. centrasiaticum under both nutrient regimes was similar. However, fertilization increased the biomass and the variation in gas exchange and chlorophyll a fluorescence characteristics during drought periods. Additionally, fertilization accelerated the process of drought and aggravated stress under extreme drought events. Thus, the fertilization strategy used in P. centrasiaticum restoration should be carefully selected—fertilization may not always be beneficial.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.