Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 35

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Twenty-two elements have been identified as essential to the growth and health of animals. They include 7 macroelements and 15 microelements, which play four key functions in the body: structural, physiological, catalytic and regulatory. Mineral deficiencies can result from low quality feed, impaired absorption or assimilation in the body or increased demand for minerals during intensive growth, pregnancy and lactation. Mineral-deficient feed and diets with an unbalanced mineral content impair the growth and development of young animals, decrease appetite, lower nutrient absorption, decrease immunity and increase susceptibility to contagious diseases. This paper discusses the consequences of low levels of macronutrients and micronutrients that are required for the optimal growth of calves, lambs and kids, including calcium, phosphorus, magnesium, selenium, cobalt, iron, zinc, copper, sodium, potassium and chloride.
10
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Iodine in cattle - review

63%
11
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Effects of selenium on animal health

51%
Selenium is an essential trace element in the diet of humans and domesticated animals. It is a component of more than 30 selenoproteins, which play a significant role in the body. Selenoproteins protect cells from damage inflicted by free radicals, the cause of many chronic diseases. They also participate in the metabolism of thyroid hormones, control reproductive functions and exert neuroprotective effects. In addition to its anti-proliferative and anti-inflammatory properties, selenium stimulates the immune system. The role of selenium is aided by vitamin E and sulfur-containing amino acids. Selenium deficiency contributes to pathological changes in farm animals, which incur large financial losses each year. Low selenium levels can lead to the development of nutritional muscular dystrophy, also known as white muscle disease, in lambs, kids, foals, calves and poultry from birth to 3 months of age. Selenium deficiency may also cause exudative diathesis in poultry as well as dietary necrotic liver degeneration and mulberry heart disease in pigs. Parturition problems resulting from reduced tension of the muscular layer of the uterus, postparturient paraplegia, placental retention and purulent inflammations of the uterine lining are also attributed to low selenium levels. Selenium deficiency contributes to the formation of ovarian cysts and increased embryonic mortality in the first 3-4 weeks after insemination. Selenium and vitamin E facilitate neutrophil migration to the mammary gland, and they enhance the bactericidal effects of neutrophils, thus shortening and alleviating the symptoms of clinical mastitis. Selenium poisoning is rarely encountered, and it most often results from an overdose of selenium supplements. The most common forms of selenosis are chronic selenosis, referred to as alkali disease, and acute selenosis, popularly known as blind staggers.
The aim of this study was to explain the correlations between selenium deficiency, hemostatic and biochemical disorders, and the progression of pathological changes in calves diagnosed with nutritional muscular dystrophy (NMD). The study was performed on 20 calves with supplementation of 8 ml selenium and vitamin E preparation and 20 calves with symptoms of NMD. Blood was sampled from calves aged 5, 12 and 19 days. On day 19, samples of the biceps femoris muscle were collected from 6 animals in each group for histopathological analysis. The following blood parameters were determined: PLT, PT, TT, APTT, fibrinogen and D-dimer concentrations, antithrombin III activity, glucose, selenium and vitamin E concentrations, activity of CK, LDH and GSH-Px. Muscle sections were stained with H&E and HBFP. Platelet counts were significantly lower in calves with symptoms of NMD. No significant differences in coagulation parameters were observed between the groups. Sick calves were diagnosed with hyperglycemia and elevation of CK and LDH activity. Selenium and vitamin E concentrations in the blood serum were significantly lower in the experimental group together with significant drop in GSH-Px activity. Changes characteristic of Zenker’s necrosis were observed in a muscle of the sick animals. To our best knowledge this is the first study in which the attempt was made to explain the relationship between selenium deficiency and changes in the coagulation system in ruminants.
This study investigated changes in the coagulation profile of 10 healthy female dogs subjected to ovariohysterectomy. Blood samples were collected three times – before, directly after and 24 h after surgery. Plasma samples were analyzed to determine thrombin time (TT), prothrombin time (PT), activated partial thromboplastin time (APTT), fibrinogen content, D-dimer content and antithrombin (AT) III activity. The results revealed post-operative haemostatic system disorders related to prolonged APTT, higher fibrinogen and D-dimer concentrations and lower levels of AT III activity.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.