Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 18

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Respiratory nitrate reductase (NR) from Bradyrhizobium sp. (Lupinus) USDA 3045 has biochemical properties of the membrane-bound NR type. However, in the completely sequenced rhizobium genomes only genes for the periplasmic type of dissimilatory NR were found. Therefore purification and identification of the enzyme by tandem mass spectrometry (MS/MS) was under taken. MS/MS spectra representing 149 unique tryptic peptides derived from purified 137-kDa subunit matched the NCBInr-deposited NarG sequences. MS/MS sequencing of two other SDS/PAGE bands (65- and 59-kDa) identified them as derivatives of the NarH-type protein. Applying additional validation criteria, 73% of the sequence of the NarG subunit (902 aa) and 52% of NarH sequence (266 aa) was assembled (UniProt KB acc. no. P85097 and P85098). This is the first unambiguous identification of an active NarGH-like NR in rhizobia. Moreover, arguments are provided here for the existence of a functional enzyme of this type also among other rhizobial species, basing on immunoblot screening and the presence of membrane-associated NR-active electrophoretic forms.
Previously, we showed that anaerobic induction of respiratory nitrate reductase (NR) activity in Bradyrhizobium sp. (Lupinus) USDA 3045 is strongly enhanced by nitrate or nitrite through de novosynthesis. Here, multiple NR-active soluble forms, ranging from 75kDa to 190kDa, were observed under anaerobic conditions. Electrophoretic activity band patterns differed depending on the level and the type of the N oxyanion added. The intensity of the membrane-bound NR activity band of 230kDa changed with time along with consumption of 2 mM nitrate. It was associated with a parallel 5-fold increase and then 2-fold reduction in the amount of membrane-bound NR protein. In contrast, on 4 mM nitrate, the level of NR protein was much more stable, apparently due to slower nitrate depletion. Moreover, in cells anaerobically grown without nitrate addition, a 42-kDa derivative of NR degradation was immunodetected, which was not observed if nitrate was present in the medium. These findings suggest that the amount of the respiratory NR protein could be negatively regulated by endogenous proteases in relation to the level of nitrate available. It seems, therefore, that multiple native forms might be not different isoenzymes but immature complexes or derivatives of the enzyme protein turnover. This report adds to a modest list of bacterial enzymes apparently regulated by proteolysis, such as GS, MurAA, EnvA, GdhA, and MetA.
Seven-week-old plants (symbiotic stage) of yellow lupine (Lupinus luteus L. cv. Ventus) were subjected for 8 days to 5 mM nitrate treatment or to drought stress to search for possible activation of bacteroidal nitrate and nitrite reductases. Both treatments affected activities of malate dehydrogenase and aspartate aminotransferase in nodule cytosol and therefore are presumed to impose O₂-limitation to nodule metabolism. However, no significant symptoms of senescence of nodules were found. Both nitrate treatment and drought stress increased rhizobial nitrate and nitrite reductase activities in contrast to noted decrease of corresponding activities in nodule cytoplasm. Differential regulation supports the hypothesis that bacteroidal enzymes can act in dissimilatory mode when nodule respiration is limited due to environmental stresses.
Nitrate and nitrite reduction centers in nonnodulated and symbiotic yellow lupine were analyzed. In young seedlings, nitrate was exclusively accumulated in roots, which also was shown as the main nitrate reduction center. In contrast, leaves were shown to play a key role in nitrite reduction. A similar distribution of nitrate reductase (NR) and nitrite reductase was found in nodulated plants. However, in field conditions characterized by low nitrate content, a disproportionately high level of NR activity in nodules was also observed during all stages of symbiotic growth. This feature was confirmed in nitrate-fed hydroponic cultures. Nodule NR activity was one order of magnitude higher than in roots, in spite of the small stored nitrate pool found inside nodules. This suggests that nodule NR activity had been induced not by nitrate itself but indirectly. Since bacteroids were shown to be responsible for the vast majority of nodule NR activity, the plausible explanation of this effect seems to be a dissimilatory nature of rhizobial NR. Considering that environmental nitrate could cause hypoxia inside nodules, this is the proposed way of the observed nodule NR induction.
We wcześniejszych naszych pracach stwierdziliśmy, że hodowane beztlenowo komórki szczepu USDA 3045 Bradyrhizobium sp. (Lupinus) posiadają dysymilacyjne formy reduktazy azotanowej (NR) i azotynowej (NiR). Jednakże wzrost hodowli okazał się być limitowany słabą zdolnością rizobiów do utylizacji azotynów. W pracy zcharakteryzowano warunki optymalne dla indukcji obu enzymów. Pokazano, że zarówno dla NR jak i dla NiR azotany 1-2 mmol⋅dm⁻³ były wystarczające dla osiągnięcia maksymalnego poziomu aktywności. Jednak poziom aktywności NR był dwudziestokrotnie do trzydziestokrotnie wyższy niż dla NiR. Wyższe stężenia azotanów lub azotynów niż 2 mmol⋅dm⁻³ wpływały na zmianę poziomu indukcji NR, natomiast silnie hamowały wzrost aktywności NiR. Profil czasowy indukcji aktywności obu enzymów był podobny, jednak po okresie wzrostu spadek aktywności NR następował dwukrotnie wolniej niż NiR. Prezentowane dane wskazują na drugorzędną rolę dysymilacyjnej redukcji azotynów w stosunku do poziomu respiracji azotanowej u Bradyrhizobium sp. (Lupinus). Nie mniej jednak niższe stężenia azotynów mogły być przez badany szczep utylizowane, co może umożliwiać respirację azotynową w sytuacji braku dostępnych azotanów.
The rate of phosphoenolpyruvate carboxylation by extracts from germinating lupin seeds was measured through the H¹⁴CO₃ fixation. PEP carboxylation in seed axes increased during their imbibition, mainly as a result of the increase in the activity of PEP carboxylase [EC 4.1.1.31]. However, the activity of PEP carboxykinase [EC 4.1.1.38], present during the first 3 hours of imbibition, as well as the activity of PEP-carboxykinase [EC 4.1.1.49], after 24 hours of imbibition, have also been shown. Possible physiological role of the changes in the activity of PEP carboxylases during lupin seeds germination is discussed.
The inhibitory effect of nitrate on nitrogenase activity in root nodules of legume plants has been known for a long time. The major factor inducing changes in nitrogenase activity is the concentration of free oxygen inside nodules. Oxygen avail­ability in the infected zone of nodule is limited, among others, by the gas diffusion re­sistance in nodule cortex. The presence of nitrate may cause changes in the resistance to O2 diffusion. The aim of this paper is to review literature data concerning the effect of nitrate on the symbiotic association between rhizobia and legume plants, with special emphasis on nitrogenase activity. Recent advances indicate that symbiotic associations of Rhizobium strains characterized by a high nitrate reductase activity are less suscepti­ble to inhibition by nitrate. A thesis may be put forward that dissimilatory nitrate re­duction, catalyzed by bacteroid nitrate reductase, significantly facilitates the symbi­otic function of bacteroids.
The incorporation of ¹⁴C-aspartate during the imbibition of yellow lupin seeds resulted in the production of ¹⁴C-alanine and ¹⁴CO₂. On the basis of tracer and enzymatic assays, conducted in vitro on the extract obtained from lupin seeds, it is postulated that aspartate can be converted to oxaloacetate, then, by phosphoenolopyruvate and pyruvate to alanine. This pathway can be catalyzed by the following enzymes: aspartate aminotransferase, phosphoenolpyruvate carboxykinase, pyruvate kinase and alanine aminotransferase.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.