Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 14

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Multidrug resistance (MDR) of cancer cells poses a serious obstacle to successful chemotherapy. The overexpression of multispecific ATP-binding cassette transporters appears to be the main mechanism of MDR. A search for MDR-reversing agents able to sensitize resistant cells to chemotherapy is ongoing in the hope of their possible clinical use. Studies of MDR modulators, although they have not produced clinically beneficial effects yet, may greatly enrich our knowledge about MDR transporters, their specificity and mechanism of action, especially substrate and/or inhibitor recognition. In the present review, interactions of three groups of modulators: phenothiazines, flavonoids and stilbenes with both P-glycoprotein and MRP1 are discussed. Each group of compounds is likely to interact with the MDR transporters by a different mechanism. Phenothiazines probably interact with drug binding sites, but they also could indirectly affect the transporter's activity by perturbing lipid bilayers. Flavonoids mainly interact with ABC proteins within their nucleotide-binding domains, though the more hydrophobic flavonoids may bind to regions within transmembrane domains. The possible mechanism of MDR reversal by stilbenes may result from their direct interaction with the transporter (possibly within substrate recognition sites) but some indirect effects such as stilbene-induced changes in gene expression pattern and in apoptotic pathways should also be considered. Literature data as well as some of our recent results are discussed. Special emphasis is put on cases when the interactions of a given compound with both P-glycoprotein and MRP1 have been studied simultaneously.
 Model systems such as black lipid membranes or conventional uni- or multilamellar liposomes are commonly used to study membrane properties and structure. However, the construction and dimensions of these models excluded their direct optical microscopic observation. Since the introduction of the simple method of liposome electroformation in alternating electric field giant unilamellar vesicles (GUVs) have become an important model imitating biological membranes. Due to the average diameter of GUVs reaching up to 100 µm, they can be easily observed under a fluorescent or confocal microscope provided that the appropriate fluorescent probe was incorporated into the lipid phase during vesicle formation. GUVs can be formed from different lipid mixtures and they are stable in a wide range of physical conditions such as pH, pressure or temperature. This mini-review presents information about the methods of GUV production and their usage. Particularly, the use of GUVs in studying lipid phase separation and the appearance and behavior of lipid domains (rafts) in membranes is discussed but also other examples of GUVs use in membrane research are given. The experience of the authors in setting up the GUV-forming equipment and production of GUVs is also presented.
In recent years the phage display approach has become an increasingly popular method in protein research. This method enables the presentation of large peptide and protein libraries on the surface of phage particles from which molecules of desired functional property(ies) can be rapidly selected. The great advantage of this method is a direct linkage between an observed phenotype and encapsulated genotype, which allows fast determination of selected sequences. The phage display approach is a powerful tool in generating highly potent biomolecules, including: search for specific antibodies, determining enzyme specificity, exploring protein-protein and protein-DNA interactions, minimizing proteins, introducing new functions into different protein scaffolds, and searching sequence space of protein folding. In this article many examples are given to illustrate that this technique can be used in different fields of protein science. The phage display has a potential of the natural evolution and its possibilities are far beyond rational prediction. Assuming that we can design the selection agents and conditions we should be able to engineer any desired protein function or feature.
The expression of transmembrane transporter multidrug resistance-associated protein 1 (MRP1) confers the multidrug-resistant phenotype (MDR) on cancer cells. Since the activity of the other MDR transporter, P-glycoprotein, is sensitive to membrane perturbation, we aimed to check whether the changes in lipid bilayer properties induced by flavones (apigenin, acacetin) and flavonols (morin, myricetin) were related to their MRP1 inhibitory activity. All the flavonoids inhibited the efflux of MRP1 fluorescent substrate from human erythrocytes and breast cancer cells. Morin was also found to stimulate the ATPase activity of erythrocyte ghosts. All flavonoids intercalated into phosphatidylcholine bilayers as judged by differential scanning calorimetry and fluorescence spectroscopy with the use of two carbocyanine dyes. The model of an intramembrane localization for flavones and flavonols was proposed. No clear relationship was found between the membrane-perturbing activity of flavonoids and their potency to inhibit MRP1. We concluded that mechanisms other than perturbation of the lipid phase of membranes were responsible for inhibition of MRP1 by the flavonoids.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.