Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 41

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Aquatic ecosystems are receivers for various pollutants, for instance, Chromium (Cr, one of the toxic heavy metals) and phosphorus (one of the biggest causes of water eutrophication). Such contaminants have brought serious impact on health and security of aquatic ecosystems. Physiological integration between the integrated ramets of clonal plants can increase their tolerance to environmental stress. It is hypothesized that physiological integration and phosphorus could facilitate the expansion of amphibious clonal plants from soil to Cr-polluted aquatic habitats. This study was conducted to primarily examine how physiological integration and phosphorus affected the effects of Cr on plant growth and population expansion. An amphibious clonal herbaceous plant Alternanthera philoxeroides was used to simulate the spread process by induced stolon connection or disconnection, Cr pollution and different levels of phosphorus in aquatic habitats. We found that Cr pollution deployed to apical ramets directly decreased the growth and photosynthetic parameters of the apical ramets that lacked connections to the basal ramets, but these effects could be mitigated by stolon connections. Cr pollution had no effects on these disconnected basal ramets, but the transmission of Cr from the apical parts via connected stolons negatively affected the growth of the basal ramets. Increasing the phosphorus not only increased the growth but also decreased the levels of Cr that accumulated in the plant tissues and the bioactivity of Cr. These results indicated that increasing the phosphorus could benefit the population expansion and establishment of A. philoxeroides through physiological integration from terrestrial to Cr-polluted aquatic habitats.
In vegetated constructed wetlands, plants used for phytoremediation may release pollutants back into the aquatic system as a result of decomposition after senescence, lessening wastewater disposal efficiency. After treatment of wastewater containing chromium with Alternanthera philoxeroides in constructed wetland, plant litter was used to study the release characteristics of chromium with the biomass decomposition under different levels of Cr pollution. Results indicate that decomposition rates of plant litter under zero and low-level Cr pollution were larger than those under high pollution concentration. Under low Cr intensity, the total Cr concentration in the residual increased in the first 40 days, and then decreased to 67.72% of the initial concentration. In the end, the residual ratios of plant litter in different pollution intensities were 57.91%, 48.16% and 71.79% of the initial mass on average separately, and about 57.45%, 67.14% and 38.32% of Cr had been released into the aquatic environment. The changes in percentages of chemical forms in residual should be correlated with the decomposition process reflected by the interactive effects. The release of Cr could be divided into two stages, i.e. immobilization and discharge. These results were possible coming from the moderating effect of different Cr intensities on microbial decomposers.
In this paper, ramets of an annual clonal grass Digitaria sanguinalis were subjected to rhizome severing and heavy metal pollution to determine the effects of physiological integration on growth and heavy metal accumulation traits. The negative effect of pollution on survival of offspring ramets was modified by the presence of a stolon connection. Generally, pollution negatively affected growth of offspring ramets and integrated parents. Offspring ramets in polluted soils and connected parents had higher metal contents than those outside polluted soils. In offspring, pollution and rhizome severing reduced the translocation factor (TF) of copper but pollution increased TF of zinc. The results implied that strengthened resource supply with physiological integration was likely to alleviate heavy metal stress to a greater extent. Therefore, connected clones were induced to three levels of fertilization and four heavy metal pollution treatments, studying to what extent fertilization benefited plants. The application of fertilizer to the parents slightly increased the survival rate of connected offspring. The clones produced more biomass with increasing fertilizer intensity. Fertilization resulted in less biomass allocation to roots, but the specific effect of heavy metal led to more investment to root. Fertilization promoted heavy metal accumulation and positively affected TF through integration. The suggested appropriate utilization of fertilizer in connected clones could compensate for damage induced by heavy metal to the whole system. This method should be of great potential use for remediation of heavy metals in soils by clonal plants.
The effects of 6-benzyladenine (6-BA) on plant growth, photosynthetic gas exchange, chlorophyll fluorescence and antioxidant systems of eggplant (Solanum melongena L.) under salt stress were investigated. Eggplant seedlings were exposed to 90 mM NaCl with four levels of 6-BA (5, 10, 20 and 50 µM) for 10 days. 6-BA at lower concentrations increased chlorophyll concentration, the net photosynthetic rate (PN), stomatal conductance (gs), and transpiration rate (E), intercellular CO₂ concentration (Ci) and water use efficiency (WUE), as well as the quantum efficiency of PSII photochemistry (UPSII), photochemical quenching (qp), and decreased non-photochemical quenching (NPQ), while higher concentrations reduced the effects or even exacerbated the occurrence of photosynthetic capacity. The activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) increased significantly during salt treatments, and induced the increase of the activities of these enzymes at certain concentrations of 6-BA. 6-BA also reduced significantly malonaldehyde (MDA) contents and O₂⁻ production. It was concluded that 6-BA could alleviate the detrimental effects of salt stress on plant growth by increasing photosynthetic efficiency and enhancing antioxidant enzyme systems in leaves at a proper concentration and of the varying 6-BA concentrations used, the most effective concentration for promoting growth was 10 µM under saline conditions.
Pollution of the marine environment by ship garbage is an urgent problem to be solved at home and abroad. The ship kitchen garbage vacuum collection system is a new environmental protection scheme for garbage disposal. It has many advantages, such as using a pipeline instead of manual operation, creating high-level sanitary conditions, realising completely closed garbage collection and transportation, eliminating cross-pollution, saving space and so on. In this paper, the system is modelled, and the calculation of pipeline pressure loss, the vacuum degree of the vacuum tank and the energy consumption of the system are briefly introduced. In order to reduce the energy consumption, an algorithm for the emptying and discharging port is presented. In order to solve the problem of optimising relevant parameters, the vacuum transport mechanism of garbage is studied based on an optimisation model of the pipe network, and the experimental platform of a simulation device is set up. In engineering, this is of great significance to the design of cruise ship garbage collection and treatment systems and the development of supporting technology
Water stress and provenance could affect the secondary metabolites synthesis and accumulation in herbs. Thus, this study explored the effect of soil water moisture and provenance on the growth of Paris polyphylla Smith var. yunnanensis (PPY). Three provenances (Jinping, Luquan and Weixi in Yunnan, China) of PPY samples were grown in different soil water moisture conditions [0.80, 0.70 and 0.50 field capacity (FC)] during Dec. 2015 to Sep. 2017. Results showed that the highest biomass weight was presented in 0.70 FC for Luquan and Weixi samples. Biomass weight for Jinping provenance presented a decreasing tendency with the decreased soil water moisture and the highest biomass were shown in 0.80 FC. However, quantitative analysis revealed that the total content of polyphyllin increased with decreasing the soil water moisture for Jinping and Weixi samples. The highest total content of polyphyllin in rhizome was inclined to show in Jinping samples, while the stem and leaf tissues were shown in Weixi samples. Additionally, results of ANOVA combined with PCA indicated that the difference among these three provenances were significant. Correlation analysis results revealed that 0.50 FC induced the competitive relationship occurrence for polyphyllin distribution. Thus, 0.70 FC was the most suitable soil-water condition for PPY growth. Besides, provenance collected from Jinping could consider as a good quality germplasm. Consequently, this study might provide a preliminary foundation for irrigation project formulated and provenance screened for PPY cultivation.
With the rapid development of shipbuilding industry exhaust world is also very harmful one kind of environmental issues, and the ship marine diesel engine exhaust gas is mainly produced, so in recent years it has developed a diesel engine SCR system. SCR system can control emissions of nitrogen oxides in the exhaust of vessel, furthermore air pollution can be reduced. The main goal of article was using fluent software to correct SCR system selection and flue gas flow under different size best deflector arrangement is simulated. Next goal is further optimize the structure of the SCR system
Variations in seed coat patterns are successfully employed in the establishment of evolutionary relationships. This research addressed the evolutionary implications of the anatomy of the developing seed coat in amphidiploid Brassica species. Light microscopy was used to study the development of seed coat structure in six species (15 accessions): three amphidiploids and their three diploid parents. Four types of epidermis layer, six types of subepidermis and nine types of palisade layer could be recognized during the course of the seed coat developmental process. The types of epidermis and subepidermis layers in diploids and amphidiploids changed similarly during seed development. Although there was little difference in the types of palisade layer among the accessions of diploids and amphidiploids at the early stages, many particular types appeared in these species at middle and later developmental stages. Palisade layer development varied in complicated ways in amphidiploids. Some accessions showed palisade layer types intermediate between the two putative parents, while others resembled only one of the two diploid ancestors. The developmental types of epidermis and subepidermis did not show the relationships between amphidiploids and diploids. However, the development of types of palisade layer apparently can serve as an excellent character indicating the seed coat evolution of amphidiploids.
Radial oxygen loss (ROL) has been suggested to be a major process to protect plants exposed to the anaerobic by-products of soil anaerobiosis. The aim of the present study was to test the effects of root ROL from two submerged plants (Hydrilla verticillata and Vallisneria spiralis) on the rhizosphere oxygen profile and rhizosphere microarea. Phospholipid fatty acids (PLFAs) of sediment samples were used to characterize and quantify the microbial community. The results showed clearly that there were significant differences between the two plants in radial oxygen loss, which affected rhizosphere physicochemical parameters and the microbial community. Rhizosphere total biomass, bacteria, gram-positive bacteria, actinomycetes, and microbial diversity of V. spiralis were significantly higher than those of H. verticillata. The present study highlights root ROL as a key parameter affecting the microbial community of the rhizosphere microarea.
Many social animals utter distress calls in the context of fear. These vocalizations may serve to attract audiences for help, warn individuals of danger, and confuse the predator. Here, we aim to assess the function of distress calls in free-living least horseshoe bats, Rhinolophus pusillus. We recorded distress calls from four allopatric colonies in mainland China. Playback trials, consisting of distress calls, silence, and noise, were presented to bats outside three bat roosts. Rhinolophus pusillus emitted long, harsh, broadband calls when under duress. Playback of distress calls induced a significant increase in bat passes at the loudspeaker in comparison with control trials. The number of recorded echolocation pulses increased 3.2–6.1 folds during playbacks of distress calls compared to playbacks of silence, and 2.9–5.2 folds compared to playbacks of noise. There was a positive association between bat passes and echolocation vocalizations. However, some bats delayed their emergence from the roost in response to distress call stimuli. Despite similar delayed responses, more bat passes were detected in the presence of allopatric distress calls than those from colony members. Overall, the results indicate that distress calls could attract and warn conspecifics in least horseshoe bats.
Comparative study of the genetic characteristics among three Acidithiobacillus caldus strains isolated from different typical environments in China was performed using a combination of molecular methods, namely sequencing analysis of PCR-amplified 16S rRNA genes and 16S-23S rRNA gene intergenic spacers (ITS), repetitive element PCR (rep-PCR), arbitrarily primed PCR (AP-PCR) fingerprinting and random amplified polymorphic DNA (RAPD). Both of the 16S rRNA gene and 16S-23S rRNA gene intergenic spacers sequences of the three strains exhibited small variations, with 99.9-100%, 99.7-100% identity respectively. In contrast, according to the analysis of bacterial diversity based on rep-PCR and AP-PCR fingerprinting, they produced highly discriminatory banding patterns, and the similarity values between them varied from 61.97% to 71.64%. RAPD analysis showed that banding profiles of their genomic DNA exhibited obvious differences from each other with 53.44-75% similarity. These results suggested that in contrast to 16S rRNA genes and 16S-23S rRNA gene intergenic spacers sequencing analysis, rep-PCR, AP-PCR fingerprinting and RAPD analysis possessed higher discriminatory power in identifying these closely related strains. And they could be used as rapid and highly discriminatory typing techniques in studying bacterial diversity, especially in differentiating bacteria within Acidithiobacillus caldus.
Nitric oxide (NO) has emerged as a key molecule involved in many physiological events in plants. To characterize roles of NO in tolerance of tomato (Lycopersicom esculentum Mill.) to salt stress, the protective effects of NO against salt-induced oxidative stress in the leaves of tomato cultivar Hufan1480 (salt-tolerant) and Hufan2496 (salt-sensitive) were evaluated. Under salt stress, Hufan1480 showed higher biomass accumulation, and less oxidative damage when compared with the Hufan2496. Application of exogenous sodium nitroprusside, a NO donor, dramatically alleviated growth suppression induced by salt stress in two tomato ecotypes, reflected by decreased malondialdehyde and O₂⁻ production. Furthermore, the antioxidant enzymes superoxide dismutase, guaiacol peroxidase, catalase and ascorbate peroxidase, the antioxidant metabolites ascorbate and reduced glutathione, and the osmosis molecules proline and soluble sugar were increased in both ecotypes in the presence of NO under salt stress. Therefore, the protective effect of NO against salt-induced oxidative damages in tomato seedlings is most likely mediated through stimulation of antioxidant system.
In order to investigate the concentrations of selenium (Se) in plants of the Dashan Region, a typical Se-rich area of China, and to illuminate the daily dietary Se intake of residents in this region, 83 crop samples and 144 Chinese herb samples were collected. Total Se was analyzed in the edible portion of crops and the medical portion of Chinese herbs. The average concentrations of Se ranged from 100 to 3,100 μg kg⁻¹ (dry weight/DW) in different crops and from 20 to 1,500 μg kg⁻¹ in the Chinese herbs (DW). The crop that contained the highest concentrations of Se was radish, while maize contained the lowest levels. For the Chinese herbs, the highest concentrations of Se were found in Rumex japonicas, while Cape jasmine contained the lowest levels of Se. The average enrichment coefficients (ECs) were 6.1-300% in crops, and 1.6⁻¹17% in Chinese herbs. Among the crops, radish had the highest EC (300%), while pumpkin had the lowest (6.1%). Among the Chinese herbs, Sapium sebiferum had the highest EC (117%), while Dicranopteris dichotoma had the lowest (1.6%). Based on the composition of residents’ daily diets, the estimated daily Se intake from crops was 282±20 μg day⁻¹, and was about 5 times higher than the RDA value suggested by WHO (55 μg day⁻¹). Although no selenosis incidents have occurred in the Dashan Region to date, the potential health risk caused by chronic exposure to high levels of Se cannot be ignored.
The identification of proteins involved in pollen germination and tube growth is important for fundamental studies of fertility and reproduction in flowering plants. We used 2-DE and MALDI-TOF-MS to identify differentially expressed proteins in mature (P0) and 1-h germinated (P1) maize pollen. Among about 470 proteins separated in 2D gels, the abundances of 26 protein spots changed (up- or down-regulation) between P0 and P1. The 13 up-regulated protein spots were mainly involved in tube wall modification, actin cytoskeleton organization, energy metabolism, signaling, protein folding and degradation. In particular, pectin methylesterase, inorganic pyrophosphatase, glucose-1-phosphate uridylyltransferase and rab GDP dissociation inhibitor α are highly up-regulated, suggesting their potential role in pollen tube growth. The down-regulated 13 protein spots mainly include defense-related proteins, pollen allergens and some metabolic enzymes. This study would contribute to the understanding of the changes in protein expression associated with pollen tube development.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.