Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
It is postulated, that brain-derived neurotrophic factor (BDNF) have been implicated in the neurobiological mechanisms underlying brain plasticity after chronic stress. The objective of this study was to evaluate infl uence of chronic stress on brain plasticity measured by BDNF immunoreactivity in brain structures of young (P28) and adult (P360) rats. 26 male Wistar rats were exposed to 15 min daily open fi eld (OF) or forced swim test (FS) during three weeks. Fluorescent immunohistochemistry was used to localize BDNF positive cells in hypothalamic areas connected with stress response: both parvo- and magnocellular divisions of the paraventricular nucleus (PVp and PVm) and the supraoptic nucleus (SO). In animals aged P28 chronic OF i FS stress caused a statistically signifi cant (P<0.001) decline in the number of BDNF-ir cells in both parts of the PV and SO. In contrast, in rats P360 was not observed any change in the number of BDNF-ir cells after chronic OF stimulation compared to control in PVp and SO. In summary: age of rats subjected to chronic stimulation OF FS or stress had an impact on changes in the number of BDNF-ir cells in the tested hypothalamic nuclei.
NGF (nerve growth factor) is involved not only in growth and survival of neurons but also promotes their age-dependent morphological changes (repair and remodeling) in normal life and during stress. This study aimed to investigate an infl uence of ages, on the changes of NGF immunoreactive (-ir) cells in the: amygdala, hippocampus and hypothalamus caused by acute (one-time for 15 min) or repeated (21 days for 15 min daily) exposition to open fi eld (OF) test. Each group of age consisted of experimental and control (non-stressed) Wistar male rats. To detected NGF-ir cells single immunofl uorescence staining was applied. Each control groups revealed many of NGF-ir neurons in the studied structures. Following OF acute stimulation, the number of NGF-ir cells in all the studied structures was higher in the three months old rats than that of control ones; the level of NGF-ir cells in the one year old rats was higher only in paraventricular nucleus of hypothalamus and in central nucleus of amygdala. In two years old rats no changes was observed in comparison with control animals. After OF repeated exposition, the level of NGF-ir cells was similar to that observed under acute one. These data demonstrated that the aging affected the level of NGF-ir neurons caused by acute and repeated OF stimulation in the structures of limbic system. Stress duration did not infl uence the level of NGF-ir neurons.
This study aimed to investigate the influence of acute (a single 15 min) and chronic (15 min daily for 21 days) exposure to forced swim (FS) test on nerve growth factor (NGF)/c-Fos cells in hypothalamic paraventricular (PV) and supraoptic (SO) nuclei, the central (CeA) and medial (MeA) amygdaloid nuclei and CA3-hippocampus in juvenile (P28) and aged (P360) rats. The double-immunofluorescence (-ir) method was used to detect NGF-ir and c-Fos-ir cells. The amount of NGF/c-Fos-ir cells in relation to all NGF-ir cells is shown as a percentage. In the acute FS test an increase in NGF/c-Fos-ir cells (P<0.05) was observed in all studied structures of juvenile rats and in the PV and SO of the aged individuals. After chronic FS stress, the NGF/c-Fos-ir ratio remained unaltered (except in the SO) in P28, but it increased (P<0.05) in all investigated regions in P360 compared with the controls. The findings may reflect the state of molecular plasticity within the limbic hypothalamic-pituitary-adrenocortical (HPA) axis in both age groups, yet the phenomenon of habituation in NGF/c-Fos-ir after chronic FS exposure was observed only in juvenile animals.
Our previous study indicated that unilateral lesion of the ventral tegmental area (VTA) facilitates contralateral VTA stimulation-induced feeding or exploration. The present study was aimed to determine the possible role of the central cholinergic systems in this effect. Immunohistochemistry for choline acetyltransferase (ChAT) was used to measure the number of active cholinergic neurons in their major groups (Ch1–Ch6) and in striatal regions in rats subjected to unilateral electrocoagulation and contralateral VTA electrical stimulation (L/S group) in comparison to the unilaterally stimulated (S), unilaterally lesioned (L) and sham (Sh) groups. The study showed that unilateral VTA lesion increased (as compared to Sh group) the number of ChAT+ neurons in the Ch1–Ch3 and unilateral VTA stimulation increased the number in the Ch1 and the ventral pallidum only. The most sensitive to these changes in the mesolimbic system were cholinergic structures providing hippocampal afferentation. Surprisingly, there was no significant increase in the number of ChAT+ neurons in the L/S group. The obtained results did not confirm any evident influence of the cholinergic systems on the VTA lesion-induced facilitation of the behavioral response evoked by contralateral VTA stimulation.
The aim of this study was to investigate the influence of two periods of life, namely P28 and P360, on the changes in interleukin-1beta (IL-1β) immunoreactivity (-ir) in the hippocampus (CA1, CA3, DG) and amygdala (central-CeA, medial-MeA) caused by acute and repeated open field (OF), or by forced swim (FS) exposition. Rats were divided into groups: non-stressed, exposed to acute (one-time for 15 min) and chronic stressors (21 days for 15 min daily). We found IL-1β-ir in the control group to be higher in P360 than in P28. In P28, under OF and FS exposure, IL-1β-ir in the CeA remained unaltered but increased in the MeA and in the hippocampus after acute and chronic stress. In P360 no changes were observed in the IL-1β-ir level after acute and chronic stimulation. These data demonstrate that only the levels of IL-1β-ir in juvenile rat brains are affected by FS and OF. Additionally, there was no significant difference between FS and OF stimulation in IL-1β-ir. (Folia Morphol 2009; 68, 3: 119–128)
Changes in NGF release during stressful events have been associated with the activation of neurons expressing NGF receptors. This study examined the influence of acute stress-induced stimulation on NGF/c-Fos colocalization in the following limbic regions: the paraventricular (PV) nucleus of the hypothalamus, medial (MeA) nucleus of the amygdala, and CA3 hippocampus. Juvenile (P21) and aged rats (P360) were exposed to a 15-minute acute open field (OF) test. Double immunofluorescence staining, used to detect NGF-ir and c-Fos-ir cells, revealed a higher percentage of NGF/c-Fos-ir neurons in the P21 control group than in the P360 control group. Under OF acute stimulation, a statistically significant (p < 0.05) increase of NGF/c-Fos level in CA3 of juvenile animals and in PV and CA3 of the aged rats was observed. These observations indicate that the investigated structures in both age groups show a different response to acute OF stimulation. Acute OF affects the levels of NGF/c-Fos more significantly in aged rats. (Folia Morphol 2009; 68, 3: 129–134)
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.