Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 27

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Z hodowanej in vitro tkanki kalusowej Holarrhena antidysenterica (Roxb.) Wall. (Apocynaceae) wyizolowano frakcje polisacharydowe A i B, z wydajnością równą odpowiednio 5,76% i 0,74%. Zawartość cukrów w obu frakcjach jest stosunkowo wysoka i wynosi 34% (dla frakcji A) oraz 37% (dla frakcji B). Wyizolowane frakcje zawierają kwasy nukleinowe i komponent białkowy. Analiza chromatograficzna (PC, TLC) produktów kwasowej hydrolizy frakcji polisacharydowych wykazała, że obie frakcje są heteropolisacharydami, zawierającymi te same cukry, arabinozę i glukozę. Obie frakcje zawierają jakościowo ten sam zespół aminokwasów: alaninę, glicynę, kwas asparaginowy, serynę i treoninę.
The aim of the study was chemical analysis of polysaccharide fractions from sporocarps of Sarcodon imbricatus collected in natural sites and from the mycelium of in vitro cultures. Three polysaccharide fractions (FOI, FOII, FOIII) were isolated from sporocarps and two (FKI, FKII) from in vitro cultures. Qualitative analysis by HPLC method showed that they are composed of galactose and fucose (FOI, FKI) or glucose and fucose (FOII, FKII). FOIII fraction of the sporocarps consisted of glucose only. Molecular weights of isolated fractions ranged from 3.8 to 16.3 kDa for fractions from the sporocarps and from 5.8 to 14.7 kDa for that ones isolated from in vitro culture. The total percentage of sugar content for all fractions ranged from 97.8% to 99.1%. The percentage of uronic acids contents in acidic fractions was 2.6% and 2.7% for the FOI and FKI respectively. The work included also an assessment of cytotoxic activity of polysaccharide fractions in relation to tumor cell lines of human breast cancer MCV-7. FOI polysaccharide fraction of the sporocarps inhibited the growth of cancer cells in 50% compared to the control at a concentration of 0.0125%, while the polysaccharide fraction FKI from in vitro cultures inhibited cell growth in a concentration of 0.016%.
Optimization of conditions for hydroquinone biotransformation into its β-ᴅ-glucoside, arbutin, in agitated shoot cultures of Ruta graveolens L. and Hypericum perforatum L. allowed us to obtain a maximum content of this important therapeutic and cosmetic product of 7.8 and 7.2% (dry weight), respectively. These contents are higher than respective values required for standardization of known arbutin-containing plant raw materials according to the European Pharmacopoeia and national pharmacopoeias of European countries.
In vitro cultures of Cistus ×incanus (pink rock-rose) were maintained on two vari­ants of Murashige and Skoog (MS) medium differing in terms of composition of plant growth regulators (PGRs): 6-benzyladenine (BA) and 1-naphthaleneacetic acid (NAA) at the following concentrations: 3 mg/L and 0, 3 mg/L and 1 mg/L, respectively, and on a variant without PGRs – a control. Cultures were maintained in a form of agar and agitated shoot cultures. The qualitative and quantitative analyzes of three groups of phenolic compounds (catechins, flavonoids, and free phenolic acids) were performed by using the HPLC-DAD technique in methanolic extracts of in vitro biomasses and of commercial plant raw material. In analyzed extracts from in vitro cultures, the presence of catechin [max. 197.80 mg / 100 g dry weight (DW)], epicatechin gallate (max. 30.74 mg / 100 g DW), gallic acid (max. 83.23 mg / 100 g DW), quercetin (max. 10.15 mg / 100 g DW), and quercitrin (max. 72.89 mg / 100 g DW) was confirmed. The quantities of accumulated compounds varied and depended on the type of in vitro culture and the concentration of PGRs in media. The highest amounts of all estimated compounds were obtained in biomasses from agar cultures cultivated on medium without PGRs in vitro. In extracts obtained from commercial raw material, gallic acid (max. 261.80 mg / 100 g DW) and quercetin (max. 255.96 mg / 100 g DW) were detected as being the dominant compounds.
Optimization of the process of biotransformation of hydroquinone into its β-D-glucoside – arbutin, was performed in agitated shoot cultures of Schisandra chinensis. The optimisation involved testing various concentrations of the precursor and different ways of administering it. Arbutin was accumulated mainly in the in vitro cultured biomass (85.2–98.6%). By optimizing the process, a 2.26-fold increase in the overall product content was obtained. The highest amount (17.8 mg·g–1 DW) was found after administering 384 mg·l–1 hydroquinone in a dose divided into two portions. An experiment with the biotransformation of 4-hydro- xybenzoic acid did not produce arbutin but a mixture of two products of glucosylation of the precursor – hydroxybenzoic acid 4-O-β-glucopyranoside and 4-hydroxybenzoic acid β-glucopyranosyl ester. The identity of all biotransformation products was confirmed by 1H-NMR analysis. The results for the production of arbutin by the biotransformation of hydroquinone are of potential practical importance. On the other hand, the fact of confirming the presence of two glucosylation products has a great cognitive value.
Arbutin (hydroquinone β-D-glucoside) is a compound of plant origin possessing valuable therapeutic (urinary tract disinfection) and cosmetic (skin whitening) properties, which can be obtained from in vitro cultures of plants belonging to different taxa via biotransformation of exogenously supplemented hydroquinone. Agitating cultures of Aronia melanocarpa were maintained on the Murashige and Skoog medium containing growth regulators: the cytokinin - BAP (6-benzylaminopurine), 2 mg/l and the auxin NAA (α-naphthaleneacetic acid), 2 mg/l. The biomass was cultured for 2 weeks and then hydroquinone was supplemented at the following doses: 96, 144, 192, 288 and 384 mg/l either undivided or divided into two or three portions added at 24-hour intervals. The content of the reaction product - arbutin, was determined using an HPLC method in methanolic extracts from biomass and lyophilized medium samples collected 24 hours after the addition of the last precursor dose. The total amounts of arbutin were very diverse, from 2.71 to 8.27 g/100g d.w. The production of arbutin rose with increasing hydroquinone concentration. The maximum content of the product was observed after hydroquinone addition at 384 mg/l divided into two portions. Biotransformation efficiency also varied widely, ranging from 37.04% do 73.80%. The identity of the product - arbutin, after its isolation and purification was confirmed by spectral analysis (1H-NMR spectrum). The maximum amount of arbutin obtained was higher than that required by the latest 9th Edition of the Polish Pharmacopoeia and by the newest 8th Edithion of European Pharmacopoeia for Uvae ursi folium (7.0 g/100g d.w.), and is interesting from practical point of view.
Phenolic acids, both derivatives of benzoic and cinnamic acids, possess valuable biologically properties: anti-inflammatory, antioxidant, anticarcinogenic and others. Studies of the accumulation of these compounds focused mostly on plant material, but the Basidiomycota taxon are also the rich sources of these compounds. The aim of the study was qualitative and quantitative HPLC analysis of phenolic acids and cinnamic acid in fruiting bodies of selected edible mushroom species belonging to the phylum Basidiomycota: Armillaria mellea, Boletus badius, Boletus edulis, Cantharellus cibarius, Lactarius deliciosus and Pleurotus ostreatus. The investigations revealed the presence of the following acids: protocatechuic, p-hydroxybenzoic, p-coumaric, ferulic, sinapic, vanillic and cinnamic. Both the composition and the amount of phenolic acids in these species were diverse. The total amount ranged from 6.00 mg · kg-1 DW in A. mellea to 48.25 mg · kg-1 DW in Boletus badius. Protocatechuic acid amounts fluctuated in the range of 1.37–21.38 mg · kg-1 DW, with its maximum in Boletus badius. p-Hydroxybenzoic and sinapic acid dominated in Pleurotus ostreatus. Cinnamic acid levels amounted from 1.09 to 8.73 mg · kg-1 mg DW and Boletus badius contained its highest content. The results show that edible mushrooms are a good dietary source of phenolic acids with antioxidant activity.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.