PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 79 | 2 |

Tytuł artykułu

Coumarins as potential supportive medication for the treatment of epilepsy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Epilepsy, one of the most common neurological disorders, is a chronic disease of the brain manifested by seizures due to sudden, spontaneous bioelectrical discharges in nerve cells. An estimated 50 million people worldwide suffer from epilepsy. Antiepileptic drugs are the mainstream treatment for epilepsy; however, the drug resistance occurring in 20‑30% of patients and side effects of available medications have resulted in a search for natural remedies that can support disease therapy. Coumarins may be a promising option. They are a group of natural plant‑derived substances of great interest due to their broad spectrum of biological activities, including potent pharmacological properties. Recent data from experimental models demonstrates the possibility for coumarin use as a supporting t reatment of epileptic seizures. This article focuses on the mos t recent research reports available in the literature relating to the use of several selected coumarins in different experimental models of epilepsy.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

79

Numer

2

Opis fizyczny

p.126-132,fig.,ref.

Twórcy

autor
  • Department of Veterinary Hygiene, Voivodship Veterinary Inspectorate, Lublin, Poland
  • Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
autor
  • Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
autor
  • Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
  • Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland

Bibliografia

  • Barros TA, de Freitas LA, Filho JM, Nunes XP, Giulietti AM, de Souza GE, dos Santos RR, Soares MB, Villarreal CF (2010) Antinociceptive and anti-inflammatory properties of 7-hydroxycoumarin in experimental animal models: potential therapeutic for the control of inflammatory chronic pain. J Pharm Pharmacol 62: 205–213.
  • Cao Y, Liu J, Wang Q, Liu M., Cheng Y, Zhang X Lin T, Zhu Z (2017) Antidepressive-like effect of imperatorin from Angelica dahurica in prenatally stressed offspring rats through 5-hydroxytryptamine system. Neuroreport 28: 426–433.
  • Castel-Branco MM, Alves GL, Figueiredo IV, Falcão AC, Caramona MM (2009) The maximal electroshock seizure (MES) model in the preclinical assessment of potential new antiepileptic drugs. Methods Find Exp Clin Pharmacol 31: 101–106.
  • Chattha FA, Munawar MA, Kousar S (2018) Plant growth regulating activity of coumarin derivatives. Horticult Int J 2: 24–29.
  • Chen X, Sun W, Gianaris NG, Riley AM, Cummins TR, Fehrenbacher JC, Obukhov AG (2014) Furanocoumarins are a novel class of modulators for the transient receptor potential vanilloid type 1 (TRPV1) channel. J Biol Chem 289: 9600–9610.
  • Choi SY, Ahn EM, Song MC, Kim DW, Kang JH, Kwon OS, Kang TC, Baek NI (2005) In vitro GABA-transaminase inhibitory compounds from the root of Angelica dahurica. Phytother Res 19: 839–845.
  • Jain PK, Joshi H (2012) Coumarin: chemical and pharmacological profile. J App Pharm Sci 2: 236–240.
  • Kao SJ, Su JL, Chen CK, Yu MC, Bai KJ, Chang JH, Bien MY, Yang SF, Chien MH (2012) Osthole inhibits the invasive ability of human lung adenocarcinoma cells via suppression of NF-κB-mediated matrix metalloproteinase-9 expression. Toxicol Appl Pharmacol 261: 105–115.
  • Kirsch G, Abdelwahab AB, Chaimbault P (2016) Natural and synthetic coumarins with effects on inflammation. Molecules 21: 1322–1335.Kozioł E, Skalicka-Woźniak K (2016) Imperatorin–pharmacological meaning and analytical clues: profound investigation. Phytochem Rev 15: 627–649.
  • Kubrak T, Podgórski R, Stompor M (2017) Natural and synthetic coumarins and their pharmacological activity. Eur J Clin Exp Med 15: 169–175.
  • Kumar AK, Renuka N, Pavithra G, Kumar GV (2015) Comprehensive review on coumarins: Molecules of potential chemical and pharmacological interest. J Chem Pharm Research 7: 67–81.
  • Kwon OS, Choi JS, Islam MN, Kim YS, Kim HP (2011) Inhibition of 5-lipoxygenase and skin inflammation by the aerial parts of Artemisia capillaris and its constituents. Arch Pharm Res 34: 1561–1569.
  • Leung YM, Kuo YH, Chao CC, Tsou YH, Chou CH, Lin CH, Wong KL (2010) Osthol is a use-dependent blocker of voltage-gated Na+ channels in mouse neuroblastoma N2A cells. Planta Med 76: 34–40.
  • Liao PC, Chien SC, Ho CL, Wang EI, Lee SC, Kuo YH, Jeyashoke N, Chen J, Dong WC, Chao LK, Hua KF (2010) Osthole regulates inflammatory mediator expression through modulating NF-κB, mitogen-activated protein kinases, protein kinase C, and reactive oxygen species. J Agric Food Chem 58: 10445–10451.
  • Liu WB, Zhou J, Qu Y, Li X, Lu CT, Xie KL, Sun XL, Fei Z (2010) Neuroprotective effect of osthole on MPP+-induced cytotoxicity in PC12 cells via inhibition of mitochondrial dysfunction and ROS production. Neurochem Int 57: 206–215.
  • Luo KW, Sun JG, Chan JY Yang L, Wu SH, Fung KP, Liu FY (2011) Anticancer effects of imperatorin isolated from Angelica dahurica: induction of apoptosis in HepG2 cells through both death-receptor and mitochondria-mediated pathways. Chemotherapy 57: 449–459.
  • Luszczki J, Marczewski T, Mazurkiewicz L, Karwan S, Teresińska M, Florek-Łuszczki M, Gleńsk M (2011) Influence of osthole on the anticonvulsant activity of phenytoin and valproate in the maximal electroshock-induced seizures in mice. Annales UMCS 24: 33–44.
  • Luszczki JJ, Andres-Mach M, Cisowski W, Mazol I, Glowniak K, Czuczwar SJ (2009) Osthole suppresses seizures in the mouse maximal electroshock seizure model. Eur J Pharmacol 607: 107–109.
  • Luszczki JJ, Glowniak K, Czuczwar SJ (2007a) Time-course and dose-response relationships of imperatorin in the mouse maximal electroshock seizure threshold model. Neurosci Res 59: 18–22.
  • Luszczki JJ, Glowniak K, Czuczwar SJ (2007b) Imperatorin enhances the protective activity of conventional antiepileptic drugs against maximal electroshock-induced seizures in mice. Eur J Pharmacol 574: 133–139.
  • Luszczki JJ, Rękas A, Mazurkiewicz LP, Ossowska G (2010) Effect of osthole on the protective activity of carbamazepine and phenobarbital against maximal electroshock-induced seizures in mice. Annales UMCS 23: 145–156.
  • Luszczki JJ, Wojda E, Raszewski G, Głowniak K, Czuczwar SJ (2008) Influence of imperatorin on the anticonvulsant and acute adverse-effect potential of lamotrigine in maximal electroshock-induced seizures and chimney test in mice. Pharmacol Rep 60: 566–573.
  • Matos JM, Santana L, Uriarte E, Abreu OA, Molina E, Yordi EG (2015) Coumarins – an important class of phytochemicals. In: Phytochemicals – Isolation, Characterization and Role in Human (Rao V, Rao LG, Ed.). In Tech, Rijeka, Croatia p. 113–140.
  • Mazimba O (2017) Umbelliferone: sources, chemistry and bioactivities review. Bull Fac Pharm Cairo Univ 55: 223–232.
  • Mead JAR, Smith JN, Williams RT (1958) Studies in detoxication. 72. The metabolism of coumarin and of o-coumaric acid. Biochem J 68: 67–74.
  • Medina FG, Marrero JG Macías-Alonso M, González MC, Córdova-Guerrero I, Teissier García AG, Osegueda-Robles S (2015) Coumarin heterocyclic derivatives: chemical synthesis and biological activity. Nat Prod Rep 32: 1472–1507.
  • Ming LG, Zhou J, Cheng GZ, Ma HP, Chen KM (2011) Osthol, a coumarin isolated from common cnidium fruit, enhances the differentiation and maturation of osteoblasts in vitro. Pharmacology 88: 33–43.
  • Najmanova I, Dosedel M, Hrdina R, Anzenbacher P, Filipsky T, Riha M, Mladenka P (2015) Cardiovascular effects of coumarins besides their antioxidant activity. Curr Top Med Chem 15: 830–849.
  • Popp D, Plugge CM, Kleinsteuber S, Harms H, Sträubera H (2017) Inhibitory effect of coumarin on syntrophic fatty acid-oxidizing and methanogenic cultures and biogas reactor microbiomes. Appl Environ Microbiol 83: e00438–17.
  • Ramesh B, Pugalendi KV (2006) Antihyperglycemic effect of umbelliferone in streptozotocin-diabetic rats. J Med Food 9: 562–566.
  • Rogawski MA (2006) Molecular targets versus models for new antiepileptic drug discovery. Epilepsy Res 68: 22–28.
  • Rohini K, Srikumar PS (2014) Therapeutic role of coumarins and coumarin-related compounds. J Thermodyn Catal 5: 130–133.
  • Rosselli S, Maggio A, Bellone G, Formisano C, Basile A, Cicala C, Alfieri A, Mascolo N, Bruno M (2007) Antibacterial and anticoagulant activities of coumarins isolated from the flowers of Magydaris tomentosa. Planta Med 73: 116–120.
  • Selim YA, Ouf NH (2012) Anti-inflammatory new coumarin from the Ammi majus L. Org Med Chem Lett 2: 1–4.
  • Sharma S, Dixit V (2013) Epilepsy – a comprehensive review. IJPRR 2: 61–80.
  • Singhuber J, Baburin I, Ecker GF, Kopp B, Hering S (2011) Insights intostructure–activity relationship of receptor modulating coumarins and furanocoumarins. Eur J Pharmacol 668: 57–64.
  • Skalicka-Wozniak K, Budzynska B, Biala G, Boguszewska-Czubara A (2018) Scopolamine-induced memory impairment is alleviated by xanthotoxin: role of acetylcholinesterase and oxidative stress processes. ACS Chem Neurosci 9: 1184–1194.
  • Skalicka-Woźniak K, Orhan IE, Cordell GA, Nabavi SM, Budzyńska B (2016) Implication of coumarins towards central nervous system disorders. Pharmacol Res 103: 188–203.
  • Skalicka-Woźniak K, Zagaja M, Głowniak K, Łuszczki JJ (2014) Purification and anticonvulsant activity of xanthotoxin (8-methoxypsoralen). Cent Eur J Biol 9: 431–436.
  • Subramaniam SR. Ellis EM (2013) Neuroprotective effects of umbelliferone and esculetin in a mouse model of Parkinson’s disease. J Neurosci Res 91: 453–461.
  • Tian W, Cai J, Xu Y, Luo X, Zhang J, Zhang Z, Zhang Q, Wang X, Hu L, Lin G (2015) Determination of xanthotoxin using a liquid chromatography-mass spectrometry and its application to pharmacokinetics and tissue distribution model in rat. Int J Clin Exp Med 8: 15164–15172.
  • Toyama DO, Marangoni S, Diz-Filho EBS, Oliveira SCB, Toyama MH (2009) Effect of umbelliferone (7-hydroxycoumarin, 7-HC) on the enzymatic, edematogenic and necrotic activities of secretory phospholipase A2 (sPLA2) isolated from Crotalus durissus collilineatus venom. Toxicon 53: 417–426.
  • Urbain A, Marston A, Hostettmann K (2005) Coumarins from Peucedanum ostruthium as inhibitors of acetylcholinesterase. Pharm Biology 43: 647–650.
  • Vasconcelos JF, Teixeira MM, Barbosa-Filho JM, Agra MF, Nunes XP, Giulietti AM, Ribeiro-dos-Santos R, Soares MB (2009) Effects of umbelliferone in a murine model of allergic airway inflammation. Eur J Pharmacol 609: 126–131.
  • Vyas KB, Nimavat KS, Joshi KM, Jani GR (2012) Synthesis of 3-[{(3-(2’--nitrophenyl)}-prop-2-enoyl]-4-hydroxy-6-methyl-2H-chromene-2-one and its metal complexes as antimicrobial agent. J Chem Pharm Research 4: 2720–2723.
  • Wang SJ, Lin TY, Lu CW, Huang WJ (2008) Osthole and imperatorin, the active constituents of Cnidium monnieri (L.) Cusson, facilitate glutamate release from rat hippocampal nerve terminals. Neurochem Int 53: 416–423.
  • Wang YW, Yang CT, Chen YH, Gong CL, Chen YF, Kuo YH, Leung YM (2015) Inhibitory effects of imperatorin on voltage-gated K(+) channels and ATP-sensitive K(+) channels. Pharmacol Rep 67: 134–139.
  • Witaicenis A, Seito LN, Di Stasi LC (2010) Intestinal anti-inflammatory activity of esculetin and 4-methylesculetin in the trinitrobenzenesulphonic acid model of rat colitis. Chem Biol Interact 186: 211–218.
  • Wu KC, Chen YH, Cheng KS, Kuo YH, Yang CT, Wong KL, Tu YK, Chan P, Leung YM (2013) Suppression of voltage-gated Na(+) channels and neuronal excitability by imperatorin. Eur J Pharmacol 721: 49–55.
  • Wu SN, Lo YK, Chen CC, Li HF, Chiang HT (2002) Inhibitory effect of the plant-extract osthole on L-type calcium current in NG108–15 neuronal cells. Biochem Pharmacol 63: 199–206.
  • Yang D, Gu T, Wang T, Tang Q, Ma C (2010) Effects of osthole on migration and invasion in breast cancer cells. Biosci Biotechnol Biochem 74: 1430–1434.
  • Zagaja M, Andres-Mach M, Skalicka-Woźniak K, Rękas AR, Kondrat-Wróbel MW, Gleńsk M, Łuszczki JJ (2015a) Assessment of the combined treatment with umbelliferone and four classical antiepileptic drugs against maximal electroshock-induced seizures in mice. Pharmacology 96: 175–180.
  • Zagaja M, Pyrka D, Skalicka-Woźniak K, Glowniak K, Florek-Luszczki M, Gleńsk M, Luszczki JJ (2015b) Effect of xanthotoxin (8-methoxypsoralen) on the anticonvulsant activity of classical antiepileptic drugs against maximal electroshock-induced seizures in mice. Fitoterapia 105: 1–6.
  • Zagaja MP, Andres-Mach MM, Patrzylas P, Pyrka D, Szpringer M, Florek-Łuszczki M, Żółkowska D, Skalicka-Woźniak K, Łuszczki JJ (2016) Influence of xanthotoxin (8-methoxypsoralen) on the anticonvulsant activity of various novel antiepileptic drugs against maximal electroshock-induced seizures in mice. Fitoterapia 115: 86–91.
  • Zaugg J, Eickmeier E, Rueda DC, Hering S, Hamburger M (2011) HPLC-based activity profiling of Angelica pubescens roots for new positive GABA(A) receptor modulators in Xenopus oocytes. Fitoterapia 82: 434–440.
  • Zhang J, Xue J, Wang H, Zhang Y, Xie M (2011) Osthole improves alcohol-induced fatty liver in mice by reduction of hepatic oxidative stress. Phytother Res 25: 638–643.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d77f2c4c-908d-489f-8056-41abb50c023d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.