PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 61 | 4 |

Tytuł artykułu

Enzymatic "fingerprinting" of physiological diversity of microbial communities in clear-water and humic lakes

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Extracellular enzymes occurring in aquatic environment are heterogeneous in respect to their origin and function, place, where they are located and their activity. They can be divided into mainly ‘bacterial-origin’ enzymes produced by heterotrophic organisms in order to obtain organic carbon, and mostly ‘phytoplankton-bacterial-origin’ enzymes, which are produced by autotrophic and heterotrophic organisms, and are responsible mainly for obtaining inorganic compounds. Enzymes activity provides information about microorganisms present in given environment and about their physiological state. We hypothesize that the patterns (‘fingerprints’) calculated on the basis of activity of several enzymes both mainly ‘bacterial-origin’ and mainly ‘phytoplankton-bacterial-origin’ may be used to characterise lake ecosystems in terms of the physiological structure of aquatic microorganisms present in these lakes. For the study we selected four lakes from Mazurian Lakes District in north-eastern Poland. Three of them were clear-water (lakes: Kuc, Mikołajskie, Tałtowisko) and ranged from oligotrophy to eutrophy, the fourth (Lake Smolak Duży) was slightly acidic (pH 5.2), highly productive and polyhumic. Activity of phosphatase (PA), L-leucine-aminopeptidase (AMP), β-glucosidase (B-Glu), esterase (EST), glucosaminidase (Glu-ami), glucuronidase (Glu-uro) and cellobiohydrolase (Cellob) were measured fluorometrically. The results were normalised and analysis of agglomerative clustering was performed to create an enzyme activity patterns characteristic for lakes. We found out that the enzymatic pattern reflected trophic differences between studied lakes. The patterns (‘fingerprints’) of enzymes were similar for three clear-water lakes, with urease (U–ase), AMP and EST dominating the overall enzymatic activity, but differed substantially for polyhumic lake, in which considerably high PA and saccharolytic enzyme activities were observed. We conclude that the analysis of enzymatic ‘fingerprints’ can be a useful tool to characterise lakes with respect to their trophic status and physiological diversity of microbial assemblages associated with each particular lake.

Wydawca

-

Rocznik

Tom

61

Numer

4

Opis fizyczny

p.715-728,fig.,ref.

Twórcy

autor
  • Department of Microbial Ecology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02–096 Warsaw, Poland
autor
  • Department of Microbial Ecology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02–096 Warsaw, Poland
autor
  • Department of Microbial Ecology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02–096 Warsaw, Poland

Bibliografia

  • Allison S.D., Vitousek P.M. 2005 – Responses of extracellular enzymes to simple and complex nutrient inputs – Soil Biol. Biochem. 37: 937–944.
  • Allison S.D., Weintraub M.N., Gartner T.B., Waldrop M.P. 2011 – Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function – (In: Soil enzymology, Eds: G.C. Shukla, A. Varma) – Springer Verlag, pp: 229–243.
  • Anderson T.R., Williams, P.J.leB. 1999 – A one-dimensional model of dissolved organic carbon cycling in the water column incorporating combined biological-photochemical decomposition – Global Biogeochem. Cycles, 13: 337–349.
  • Antia N.J., Harrison P.J., Oliveira L. 1991 – The role of dissolved organic nitrogen in phytoplankton nutrition, cell biology and ecology – Phycologia, 30: 1–89.
  • Arnosti C. 2003 – Microbial extracellular enzymes and their role in dissolved organic matter cycling (In: Aquatic ecosystems: Interactivity of dissolved organic matter, Eds: S. Findlay, R. Sinsabaugh) – Elsevier Science (USA), pp: 315–343.
  • Azam F., Fenchel T., Field J.G., Gray J.S., Meyer-Reil L.A. 1983 – The ecological role of water-column microbes in the sea – Mar. Ecol. Prog. Ser. 10: 257–263.
  • Boschker H.T.S., Cappenberg T.E. 1998 – Patterns of extracellular enzyme activities in littoral sediments of Lake Gooimeer, the Netherlands – FEMS Microbiol. Ecol. 25: 79–86.
  • Carlson R.E. 1977 – A trophic state index for lakes – Limnol. Oceanogr. 22: 361–369.
  • Carpenter E.J., Remsen C.C., Schroeder B.W. 1972 – Comparison of laboratory and in situ measurements of urea decomposition by a marine diatom – J. Exp. Mar. Biol. Ecol. 8: 259–264.
  • Chróst R.J. 1987 – Phosphorus and microplankton development in an eutrophic lake – Acta Microbiol. Polon. 37: 205–225.
  • Chróst R.J. 1991 – Environmental control of the synthesis and activity of aquatic microbial ectoenzymes (In: Microbial enzymes in aquatic environments, Ed: R.J. Chróst) – Springer-Verlag, pp: 29 –59.
  • Chróst R.J. 1994 – Microbial enzymatic degradation of organic matter (In: Microbial ecology of Lake Plusee, Eds: J. Overbeck, R.J. Chróst) – Springer Verlag, pp. 118–174.
  • Chróst R.J., Gajewski A. 1995 – Microbial utilization of lipids in lake water – FEMS Microbiol. Ecol. 18: 45–50.
  • Chróst R.J., Gajewski A., Siuda W. 1999 – Fluorescein–diacetate (FDA) assay for determining microbial esterase activity in lake water – Arch. Hydrobiol. Spec. Issues Adwanc. Limnol. 54: 167–183.
  • Chróst R.J., Koton M., Siuda W. 2000 – Bacterial secondary production and bacterial biomass in four Mazurian lakes of differing trophic status – Pol. J. Environ. St. 9: 255–266.
  • Chróst R.J., Overbeck J. 1987 – Kinetics of alkaline phosphatase activity and phosphorus availability for phytoplankton and bacterioplankton in Lake Plusee (north German eutrophic lake) – Microb. Ecol. 13: 229–248.
  • Chróst R.J., Siuda W. 2002 – Microbial ectoenzymes in lake ecosystems (In: Enzymes in the environment: Activity, ecology and applications, Eds: R. Burns, R. Dick) – Marcel Dekker, pp. 35–72.
  • Chróst R.J., Siuda W. 2006 – Microbial production, utilization, and enzymatic degradation of organic matter in the upper trophogenic layer in the pelagial zone of lakes along a eutrophication gradient – Limnol. Oceanogr. 51: 749–762.
  • Cunha A., Almeida A., Coelho F.J.R.C., Gomes N.C.M., Oliveira V., Santos A.L. 2010 – Bacterial extracellular enzymatic activity in globally changing aquatic ecosystems (In: Current research, technology and education topics in applied microbiology and microbial biotechnology, Ed: A. Méndez-Vilas) – Formatex Microbiol. Ser. 2: 124 –135.
  • Fan C., Glibert P.M., Alexander J., Lomas M.W. 2003 – Characterization of urease activity in three marine phytoplankton species, Aureococcus anophagefferens, Prorocentrum minimum, and Thalassiosira weissflogii – Mar. Biol. 142: 949–958.
  • Francko D.A. 1991 – Filtration and buoyant density characterization of algal alkaline phosphatase (In: Microbial enzymes in aquatic environments, Ed: R.J. Chróst) – Springer Verlag, pp. 227–238.
  • Frankena J., Vanverseveld H.W., Stouthamer A.H. 1988 – Substrate and energy costs of the production of extracellular enzymes by Bacillus licheniformis – Biotechnol. Bioeng. 32: 803–812.
  • Ghuysen J., Hackenbeck R. 1994 – Bacterial cell wall – Elsevier Science Ltd. Amsterdam and New York, 401 pp.
  • Gramss G., Voigt K., Kirsche B. 1999 – Oxidoreductase enzymes liberated by plant roots and their effects on soil humic material – Chemosphere, 38: 1481–1494.
  • Harder W., Dijkhuzien L. 1984 – Physiological responses to nutrient limitation – Ann. Rev. Microb. 37: 1–23.
  • Hessen D.O. 1992 – Dissolved organic carbon in a humic lake: effects on bacterial production and respiration – Hydrobiologia, 229: 115–123.
  • Hopkinson C.S., Vallino J. J., Nolin A. 2002 – Decomposition of dissolved organic matter from the continental margin – DeepSea Research II, 49: 4461–4478.
  • Hoppe H., Arnosti C., Herndl G.F. 2002 – Ecological significance of bacterial enzymes in the marine environment (In: Enzymes in the environment, Eds: R.G. Burns, R.P. Dick) – Marcel Decker, New York, Basel, pp. 73–107.
  • Ivancić I., Fuks F., Radić T., Lyons D.M., Silović T., Kraus R., Precali R. 2010 – Phytoplankton and bacterial alkaline phosphatase activity in the northern Adriatic Sea – Mar. Environ. Res. 69: 85–94.
  • Jansson M. 1998 – Nutrient limitation and bacteria–phytoplankton interactions in humic lakes (In: Aquatic humic substances: Ecology and biogeochemistry, Eds L.J. Tranvik, D.O. Hessen) – Springer-Verlag, pp. 177–196.
  • Jasser I., Kostrzewska-Szlakowska I., Ejsmont-Karabin J., Kalinowska K., Węgleńska T. 2009 – Autotrophic versus heterotrophic production and components of trophic chain in humic lakes: the role of microbial communities – Pol. J. Ecol. 57: 423–439.
  • Judd K.E., Crump B.C., Kling G.W. 2006 – Variation in dissolved organic matter controls bacterial production and community composition – Ecology, 87: 2068–2079.
  • Kauppinen E.S., Kiersztyn B., Kaliński T., Siuda W. – A modified method for determination of organic matter utilization kinetics – Limnol. Oceanogr. Methods (submitted).
  • Kiersztyn B., Siuda W., Chróst R.J. 2002 – Microbial ectoenzyme activity: useful parameters for characterizing the trophic conditions of lakes – Pol. J. Environ. St. 11: 367–373.
  • Kiersztyn B., Siuda W., Chróst R. 2012 – Persistence of bacterial proteolytic enzymes in lake ecosystems – FEMS Microbiol. Ecol. 80: 124–134.
  • Koch A.L. 1985 – The macroeconomics of bacterial growth (In: Bacteria in their natural environments, Eds: M. Fletcher, G.D. Floodgate) – Academic Press, London, pp. 1–42.
  • Kördell W., Dassenakis M., Lintelmann J., Padberg S. 1997 – The importance of natural organic material for environmental processes in waters and soils – Pure & Appl. Chem. 69: 1571–1600.
  • Kufel L. 1982 – Phosphorus and alkaline phosphatase activity in some aquatic macrophytes –Bulletin de L’Academie Polonaise des Sciences. Serie des Sciences Biologiques, 30: 1–6.
  • Ladd J.N., Forster R.C., Nannipieri P., Oades J.M. 1996 – Soil structure and biological activity (In: Soil biochemistry, Vol. 9. Eds: G. Stotzky, J.M. Bollag) – Marcel Dekker, New York, pp. 23–78.
  • Larsen A., Fonnes Flaten G.A., Sandaa R.-A., Castberg T., Thyrhaug R., Erga S.R., Jacquet S., Bratbak G. 2004 – Spring phytoplankton bloom dynamics in Norwegian coastal waters: Microbial community succession and diversity – Limnol. Oceanogr. 49: 180–190.
  • Lee S., Fuhrman J. 1987 – Relationship between biovolume and biomass of naturally derived marine bacterioplankton – App. Environ. Microbiol. 53: 1298–1303.
  • Li H., Veldhuis M.J.W., Post A.F. 1998 – Alkaline phosphatase activities among planktonic communities in the northern Red Sea – Mar. Ecol. Prog. Ser. 173: 107–115.
  • Martinez J., Azam F. 1993 – Aminopeptidase activity in marine chroococcoid cyanobacteria – App. Environ. Microbiol. 59: 3701–3707.
  • Martinez J., Smith D.C., Steward G.F., Azam F. 1996 – Variability in ectohydrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea – Aquat. Microb. Ecol. 10: 223–352.
  • McCarthy J.J. 1972 – The uptake of urea by natural populations of marine phytoplankton – Limnol. Oceanogr. 17: 738–748.
  • Nagata T., Kirchman D.L. 1999 – Bacterial mortality: A pathway for the formation of refractory DOM? (In: Microbial biosystems: New frontiers. Proceedings of the 8th international symposium on microbial ecology, Eds: C.R. Bell, M. Brylinsky, P. Johnson-Green) – Atlantic Canada Society for Microbial Ecology, Halifax, Canada.
  • Nannipieri P., Ascher J., Ceccherini, M.T., Landi L., Pietramellara G., Renella G. 2003 – Microbial diversity and soil functions – Eur. J. Soil Sci. 54: 655–670.
  • Newell B.S., Morgan B., Cundy J. – 1967 The determination of urea in seawater – J. Mar. Res. 25: 201–202.
  • Ogawa H., Amagai Y., Koike I., Kaiser K., Benner R. 2001 – Production of refractory dissolved organic matter by bacteria – Science, 292: 917–920.
  • Parveen S. Pandey V.D. 2011– Alkaline phosphatase activity in freshwater cyanobacteria – Plant Archives, 11: 827–830.
  • Porter K.G., Feig Y.S. 1980 – The use of DAPI for identifying and counting aquatic microflora – Limnol. Oceanogr. 25: 943–948.
  • Priest F. 1977 – Extracellular enzyme synthesis in the genus Bacillus – Bacteriol. Rev. 41: 711–753.
  • Remsen C.C., Carpenter E.J., Schroeder B.W. 1972 – Competition for urea among estuarine microorganisms – Ecology, 53: 921–926.
  • Romani A.M., Fischer H., Mille-Lindblom C., Tranvik L.J. 2006 – Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities – Ecology, 87: 2559–2569.
  • Satoh Y. 1980 – Production of urea by bacterial decomposition of organic matter including phytoplankton – Int. Revue ges Hydrobiol. 65: 295–301.
  • Satoh Y., Hanya T. 1976 – Decomposition of urea by larger particulate fraction and the free bacteria fraction in a pond water – Int. Revueges Hydrobiol. 61: 799–806.
  • Siuda W. 1984 – Phosphatases and their role in organic phosphorus transformation in natural waters. A review – Pol. Arch. Hydrobiol. 31: 207–233.
  • Siuda W., Chróst R.J. Güde H. 1998 – Distribution and origin of dissolved DNA in lakes of different trophic states – Aquat. Microb. Ecol. 15: 89–96.
  • Siuda W., Güde H. 1994 – The role of phosphorus and organic carbon compounds in regulation of alkaline phosphatase activity and orthophosphate regeneration processes in lakes – Pol. Arch. Hydrobiol. 41: 171–187.
  • Siuda W., Wcisło R., Chróst R.J. 1991 – Composition and utilization of photosynthetically produced organic matter in a eutrophic lake – Arch. Hydrobiol. 121: 473–484.
  • Solomon C.M., Collier J.L., Berg G.M., Glibert P.M. 2010 – Role of urea in microbial metabolism in aquatic systems: a biochemical and molecular review – Aquat. Microb. Ecol. 59: 67–88.
  • Thieneman A. 1925 – Biologische seetypen und die Gründung einer hydrobiologischen Anstalt am Bodensee – Arch. Hydrobiol. 13, Stuttgart.
  • Turley C.M. 1986 – Biological studies in the vicinity of a shallow-sea tidal mixing front. IV. Seasonal and spatial distribution of urea and its uptake by phytoplankton – Phil. Trans. R. Soc. Lond. B. 310: 471–500.
  • Weisse T. 1993 – Dynamics of autotrophic picoplankton in marine and freshwater ecosystems (In: Advances in microbial ecology, Ed: J.G. Jones) – Plenum Press, NY, pp. 327–370.
  • Wetzel R.G. 2001 – Limnology: Lake and river ecosystems – 3rd ed. Academic Press, 1006 pp.
  • Wurzbacher C.M, Bärlocher F., Grossart H. 2010 – Fungi in lake ecosystems – Aquat. Microb. Ecol. 59: 125–149.
  • Wynne D., Gophen M. 1981 – Phosphatase activity in freshwater zooplankton – Oikos, 37: 369–376.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d4b2c4d4-08de-4ced-9f4f-9c8972c814a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.