PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 12 | 1 |

Tytuł artykułu

Mitochondrial DNA confirms low genetic variation of the greater mouse-eared bats, Myotis myotis, in Central Europe

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Recent data shows that range expansion of the greater mouse-eared bat Myotis myotis (Borkhausen, 1797) to Central Europe occurred mainly from the Iberian glacial refugium and in a lesser extent from South-eastern Europe. Here we present sequences of the mitochondrial control region obtained from 16 localities in the Czech Republic, Slovakia, and NW Romania. From the 97 sequences, 87 were identical with the haplotype H1, the most frequent one of haplogroup A occurring throughout Western Europe, and nine sequences (eight haplotypes) differed from H1 only by one substitution. This confirms decrease of genetic variability from south to north and colonisation of Central Europe from the Iberian Peninsula. However, we found a new haplotype, which is closely related to sequences from haplogroup D so far described in the nominative form of this species only from Greece and Bulgaria, which suggests two possible scenarios. First, colonization route from the Balkan refugium existed in this species as well, which is supported also by recently published analyses of historical DNA. Second, the Balkan haplotype entered Central Europe via interspecific hybridisation with M. blythii, a species, in which the haplogroup D is the most frequent in Europe and which is known to have colonised Europe from south-east.

Wydawca

-

Rocznik

Tom

12

Numer

1

Opis fizyczny

p.73-81,fig.,ref.

Twórcy

autor
  • Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Kvetna 8, CZ-603 65 Brno, Czech Republic
autor
autor
autor
autor

Bibliografia

  • 1. J. C. Avise 2000. Phylogeography: the history and formation of species. Harvard University Press, Cambridge, USA, 447 pp. Google Scholar
  • 2. H. J. Bandelt , P. Forster , and A. Röhl . 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16: 37–48. Google Scholar
  • 3. T. J. C. Beebee , and G. Rowe . 2004. An introduction to molecular ecology. Oxford University Press, New York, 370 pp. Google Scholar
  • 4. P. Benda , and I. Horáčk . 1995. Biometrics of Myotis myotis and Myotis blythi. Myotis, 32–33: 45–55. Google Scholar
  • 5. P. Berthier , L. Excoffier , and M. Ruedi . 2006. Recurrent replacement of mtDNA and cryptic hybridization between two sibling bat species Myotis myotis and Myotis blythii. Proceedings of the Royal Society, 273B: 3101–3109. Google Scholar
  • 6. W. Bogdanowicz , R. A. Van Den Bussche , M. Gajewska , T. Postawa , and M. Harutyunyan . 2009. Ancient and contemporary DNA sheds light on the history of mouse-eared bats in Europe and the Caucasus. Acta Chiropterologica, 11: 289–305. Google Scholar
  • 7. T. M. Burland , and J. Worthington-Wilmer . 2001. Seeing in the dark: molecular approaches to the study of bat populations. Biological Reviews, 76: 389–409. Google Scholar
  • 8. T. M. Burland , E. M. Barratt , M. A. Beaumont , and P. A. Racey . 1999. Population genetic structure and gene flow in a gleaning bat, Plecotus auritus. Proceedings of the Royal Society, 266B: 975–980. Google Scholar
  • 9. V. Castella , M. Ruedi , L. Excoffier , C. Ibánez , R. Arlettaz , and J. Hausser . 2000. Is the Gibraltar Strait a barrier to gene flow for the bat Myotis myotis (Chiroptera: Vespertilionidae)? Molecular Ecology, 9: 1761–1772. Google Scholar
  • 10. V. Castella , M. Ruedi , and L. Excoffier . 2001. Contrasted patterns of mitochondrial and nuclear structure among nursery colonies of the bat Myotis myotis. Journal of Evolutionary Biology, 14: 708–720. Google Scholar
  • 11. L. Fumagalli , P. Taberlet , L. Favre , and J. Hausser . 1996. Origin and evolution of homologous repeated sequences in the mitochondrial DNA control region of shrews. Molecular Biology and Evolution, 13: 31–46. Google Scholar
  • 12. J. Gaisler , V. Hanák , V. Hanzal , and V. Jarský . 2003. Výsledky kroužkování netopýů v České republice a na Slovensku, 1948–2000. [Results of bat banding in the Czech Republic and Slovakia, 1948–2000]. Vespertilio, 7: 3–61. [in Czech with English summary]. Google Scholar
  • 13. G. M. Hewitt 2000. The genetic legacy of the Quaternary ice ages. Nature, 405: 907–913. Google Scholar
  • 14. G. M. Hewitt 2004. Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society, 359B: 183–195. Google Scholar
  • 15. I. Horáček 1984. Remarks on causality of population decline in European bats. Myotis, 21–22: 138–147. Google Scholar
  • 16. P. Hulva , I. Horáček , P. P. Strelkov , and P. Benda . 2004. Molecular architecture of Pipistrellus pipistrellus/Pipistrellus pygmaeus complex (Chiroptera: Vespertilionidae): further cryptic species and Mediterranean origin of the divergence. Molecular Phylogenetics and Evolution, 32: 1023–1035. Google Scholar
  • 17. R. Hutterer , T. Ivanova , C. Meyer-Cords , and L. Rodrigues . 2005. Bat migrations in Europe. Naturschutz und Biologische Vielfalt, Federal Agency for Nature Conservation, Bonn, Heft 28, 162 pp. Google Scholar
  • 18. K. M. Ibrahim , R. A. Nichols , and G. M. Hewitt . 1996. Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity, 77: 282–291. Google Scholar
  • 19. J. Juste , C. Ibáñez , J. Muñoz , D. Trujillo , P. Benda , A. Karataş , and M. Ruedi . 2004. Mitochondrial phylogeography of the long-eared bats (Plecotus) in the Mediterranean Palaearctic and Atlantic Islands. Molecular Phylogenetics and Evolution, 31: 1114–1126. Google Scholar
  • 20. G. Kerth , F. Mayer , and B. König . 2000. Mitochondrial DNA (mtDNA) reveals that female Bechstein's bats live in closed societies. Molecular Ecology, 9: 793–800. Google Scholar
  • 21. G. Kerth , F. Mayer , and E. Petit . 2002. Extreme sex-biased dispersal in the communally breeding, nonmigratory Bechstein's bat (Myotis bechsteinii). Molecular Ecology, 11: 1491–1498. Google Scholar
  • 22. S. L. Kosakovsky Pond , S. D. W. Frost , and S. V. Muse . 2005. HyPhy: hypothesis testing using phylogenies. Bioinformatics, 21: 676–679. Google Scholar
  • 23. I. Mayrose , N. Friedman , and T. Pupko . 2005. A Gamma mixture model better accounts for among site rate heterogeneity. Bioinformatics, 21: 151–158. Google Scholar
  • 24. G. F. McCracken , M. K. McCracken , and A. T. Vawter . 1994. Genetic structure in migratory populations of the bat Tadarida brasiliensis mexicana. Journal of Mammalogy, 75: 500–514. Google Scholar
  • 25. A. J. Mitchell-Jones , G. Amori , W. Bogdanowicz , B. Kryštufek , P. J. H. Reijnders , F. Spitzenberger , M. Stubbe , J. B. M. Thissen , V. Vohralík , and J. Zima (eds.). 1999. The atlas of European mammals. Academic Press, London, 484 pp. Google Scholar
  • 26. E. Petit , and F. Mayer . 1999. Male dispersal in the noctule bat (Nyctalus noctula): where are the limits? Proceedings of the Royal Society, 266B: 1717–1722. Google Scholar
  • 27. E. Petit , and F. Mayer . 2000. A population genetic analysis of migration: the case of the noctule bat (Nyctalus noctula). Molecular Ecology, 9: 683–690. Google Scholar
  • 28. E. Petit , L. Excoffier , and F. Mayer . 1999. No evidence of bottleneck in the postglacial recolonization of Europe by the noctule bat (Nyctalus noctula). Evolution, 53: 1247–1258. Google Scholar
  • 29. D. Posada , and T. R. Buckley . 2004. Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology, 53: 793–808. Google Scholar
  • 30. D. Posada , and K. A. Crandall . 1998. Modeltest: testing the model of DNA substitution. Bioinformatics, 14: 817–818. Google Scholar
  • 31. T. Postawa 2004. Changes in bat fauna during the Middle and Late Holocene as exemplified by thanatocoenoses dated with 14C AMS from Kraków-Częstochowa Upland caves (Poland). Acta Chiropterologica, 6: 269–292. Google Scholar
  • 32. A. Rambaut and A. J. Drummond . 2007. Tracer v1.3, Available from http://beast.bio.ed.ac.uk/Tracer Google Scholar
  • 33. Z. Řehák, and I. Baroň. 2006. Netopýři Hranické propasti. Pp. 37–38, in Hranická propast ( M. Orálek, ed. ). Čsop, Valašské Meziříčí, 64 pp. Google Scholar
  • 34. N. M. Rivers , R. K. Butlin , and J. D. Altringham . 2005. Genetic population structure of Natterer's bats explained by mating at swarming sites and philopatry. Molecular Ecology, 14: 4299–4312. Google Scholar
  • 35. L. Rodriguez , A. Zahn , A. Rainho , and J. M. Palmeirim . 2003. Contrasting the roosting behaviour and phenology of an insectivorous bat (Myotis myotis) in its souhtern and northern distribution ranges. Mammalia, 67: 321–335. Google Scholar
  • 36. F. Ronquist , and J. P. Huelsenbeck . 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19: 1572–1574. Google Scholar
  • 37. M. Ruedi , and V. Castella . 2003. Genetic consequences of the ice ages on nurseries of the bat Myotis myotis: a mitochondrial and nuclear survey. Molecular Ecology, 12: 1527–1540. Google Scholar
  • 38. M. Ruedi , S. Walter , M. C. Fischer , D. Scaravelli , L. Excoffier , and G. Heckel . 2008. Italy as a major Ice Age refuge area for the bat Myotis myotis (Chiroptera: Vespertilionidae) in Europe. Molecular Ecology, 17: 1801–1814. Google Scholar
  • 39. G. Schwartz 1978. Estimating the dimension of a model. The Annals of Statistics, 6: 461–464. Google Scholar
  • 40. A. Stamatakis 2006 RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22: 2688–2690. Google Scholar
  • 41. J. Sullivan , D. Swofford , and G. Naylor . 1999. The effect of taxon sampling on estimating rate heterogeneity parameters of maximum likelihood models. Molecular Biology and Evolution, 16: 1347–1356. Google Scholar
  • 42. P. Taberlet , L. Fumagalli , A. G. Wust-Saucy , and J. F. Cosson . 1998. Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology, 7: 453–464. Google Scholar
  • 43. K. Tamura , J. Dudley , M. Nei , and S. Kumar . 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24: 1596–1599. Google Scholar
  • 44. M. Uhrin , P. Kaňuch , J. Krištofík , and L. Paule . In press. Phenotypic plasticity in the greater mouse-eared bat in extremely different roost conditions. Acta Theriologica. Google Scholar
  • 45. K. N. Weaver , S. E. Alfano , A. R. Kronquist , and D. M. Reeder . 2009. Healing rates of wing punch wounds in freeranging little brown myotis (Myotis lucifugus). Acta Chiropterologica, 11: 220–223. Google Scholar
  • 46. J. Worthington-Wilmer , and E. Barratt . 1996. A non-lethal metod of tissue sampling for genetic studies of chiropterans. Bat Research News, 37: 1–3. Google Scholar

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-e8a35d2b-9ec6-4ce7-8a05-4848426ed84c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.