PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 59 | 1 |

Tytuł artykułu

Biomass fraction of graminoids and forbs in N-limited Alpine grasslands: N:P stoichiometry

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
It is known that the dominance of graminoid species is promoted by N addition; however, there has been relatively little effort to examine the pattern induced by natural N fertility. Since nutrie nt use e fficiency (NUE) is an important trait determining plant competitive ability, we expected that the species guild with higher NUE (lower nutrient content) may be more competitive on infertile soils. We explo red t he relationships between relative forbs biomass share , soil N and productivity by the linear regressi on analysis on a natural alpine meadow in northeast of Qinghai- Tibetan Plateau (3600 m a.s.l.). To test the variety of leaf N:P stoichiometry, paired t test and general linear model multivariate (GLM) analysis were also used. We f ound that the leaf N:P ratios of the whole community were below 13 in studied sites, which may be consistent with the N limitation on the veget ation. Graminoids re tained lower concentrations of leaf N and P than forbs in community on the Nlimited grassland. Consistent with our prediction, we found that the biomass fraction of graminoids declined with soil N content and aboveground production on the grassland. Different from the pattern along fertility gradients induced by N fertilization, our results showed that gr aminoids with lower internal nutrient content w ere able to resist low levels of nutrient availability on the natural alpine grassland when compared to forbs.

Wydawca

-

Rocznik

Tom

59

Numer

1

Opis fizyczny

p.105-114,fig.,ref.

Twórcy

autor
  • Key Laboratory of Arid and Grassland Agroecology at Lanzhou University, Ministry of Education, Lanzhou, 730000, P. R. China
autor
autor
autor
autor
autor
autor

Bibliografia

  • Briggs J.M., Knapp A.K. 2001 – Determinants of C3 forb growth and production in a C4 dominated grassland – Plant Ecol. 152: 93–100.
  • Brown J.H. 2004 – Toward a metabolic theory of ecology – Ecology, 85: 1771–1789.
  • Chapin F.S. 1983 – Direct and indirect effects of temperature on arctic plants – Polar Biol. 2: 47–52.
  • Chapin F.S., Korner C. 1995 – Arctic and alpine biodiversity: patterns, causes and ecosystem consequences – Springer-Verlag.
  • Dong S.K., Long R.J., Hu Z.Z., Kang M.Y., Pu X.P. 2003 – Productivity and nutritive value of some cultivated perennial grasses and mixtures in the alpine region of the Tibetan Plateau – Grass Forage Sci. 58: 302–308.
  • Du G., Wang G. 1995 – Succession and qualitative change of artificial grassland of Gan Nan Sub-Alpine Meadow – Acta Bot. Sin. 4: 306–313.
  • Enquist B.J., Economo E.P., Huxman T.E., Allen A.P., Ignace D.D., Gillooly J.F. 2003 – Scaling metabolism from organisms to ecosystems – Nature, 423: 639–642.
  • Evans J.R. 1989 – Photosynthesis and nitrogen relationships in leaves of C3 plants – Oecologia, 78: 9–19.
  • Fang X., Lu L., Mason J.A., Yang S., An Z., Li J. 2003 – Pedogenic response to millennial summer monsoon enhancements on the Tibetan Plateau – Quatern. Int. 106/107: 79–88.
  • Gusewell S. 2004 – N:P ratios in terrestrial plants: variation and functional significance – New Phytol. 164: 243–266.
  • Gusewell S. 2005 – Nutrient resorption of wetland graminoids is related to the type of nutrient limitation – Funct. Ecol. 19: 344–354.
  • Gusewell S., Verhoeven J.T.A. 2006 – Litter N:P ratios indicate whether N or P limits the decomposability of graminoid leaf litter – Plant Soil, 287: 131–143.
  • Grerup F. 1998 – Nitrogen response of herbs and graminoids in experiments with simulated acid soil solution – Environ. Pollut. 102: 93–99.
  • He J.-S., Wang L., Flynn D.F.B., Wang X., Ma W., Fang J. 2008 – Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes – Oecologia, 155: 301–310.
  • He J.-S., Wang Z., Wang X., Schmid B., Zuo W., Zhou M., Zheng C., Wang M., Fang J. 2006 – A test of the generality of leaftrait relationships on the Tibetan Plateau – New Phytol. 170: 835–848.
  • Heerwaarden L.M.V., Toet S., Aerts R. 2003 – Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization – J. Ecol. 91: 1060–1070.
  • Hooper D.U., Vitousek P.M. 1997 – The effects of plant composition and diversity on ecosystem processes – Science, 277: 1302–1305.
  • Kull O., Aan A. 1997 – The relative share of graminoid and forb life-forms in a natural gradient of herb layer productivity – Ecography, 20: 146–154.
  • Lovelock C.E., Feller I.C., Ball M.C., Ellis J., Sorrell B. 2007 – Testing the Growth Rate vs. Geochemical Hypothesis for latitudinal variation in plant nutrients – Ecol. Lett. 10: 1154–1163.
  • Mcgroddy M.E., Daufresne T., Hedin L.O. 2004 – Scale of C:N:P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios – Ecology, 85: 2390–2401.
  • Nemani R.R., Keeling C.D., Hashimoto H. 2003 – Climate-driven increases in global terrestrial net primary production from 1982 to 1999 – Science, 300: 1560–1563.
  • Niklas K.J., Owens T., Reich P.B., Cobb E.D. 2005 – Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth – Ecol. Lett. 8: 636–642.
  • Olofsson J. 2001 – Influence of herbivory and abiotic factors on the distribution of tall forbs along a productivity gradient: a transplantation experiment – Oikos, 94: 351–357.
  • Olsen S.R., Cole C.V., Watanabe F.S., Dean L.A. 1954 – Estimation of available phosphorus in soils by extraction with sodium bicarbonate – Gov. Printing Office, Washington D.C., pp. 1–19.
  • Ratnam J., Sankaran M., Hanan N.P., Grant R.C., Zambatis N. 2008 – Nutrient resorption patterns of plant functional groups in a tropical savanna: variation and functional significance – Oecologia, 157: 141–151.
  • Reich P.B., Buschena C., Tjoelker M.G., Wrage K., Knops J., Tilman D., Machado J.L. 2003 – Variation in growth rate and ecophysiology among 34 grassland and savanna species under contrasting N supply: a test of functional group differences – New Phytol. 157: 617–631.
  • Roscher C., Thein S., Schmid B., Scherer-Lorenzen M. 2008 – Complementary nitrogen use among potentially dominant species in a biodiversity experiment varies between two years – J. Ecol. 96: 477–488.
  • Scherer-Lorenzen M., Palmborg C., Prinz A., Schulze E.-D. 2003 – The role of plant diversity and composition for nitrate leaching in grasslands – Ecology, 84: 1539–1552.
  • Semmartin M., Oyarzabal M., Loreti J., Oesterheld M. 2007 – Controls of primary productivity and nutrient cycling in a temperate grassland with year-round production –Austral. Ecol. 32: 416–428.
  • Spehn E.M., Joshi J., Schmid B., Diemer M., Korner C. 2000 – Above-ground resource use increases with plant species richness in experimental grassland ecosystems – Funct. Ecol. 14: 326–337.
  • Tessier J.T., Raynal D.J. 2003 – Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation – J. Appl. Ecol. 40: 523–534.
  • Tilman D. 1997 – Mechanisms of plant competition – Blackwell Science, Oxford, pp. 239–261.
  • Wilson S.D., Tilman D. 2002 – Quadratic variation in old-field species richness along gradients of disturbance and nitrogen – Ecology, 83: 492–504.
  • Wright I.J., Reich P., Westoby M., Ackerly D. 2004 – The worldwide leaf economics spectrum – Nature, 428: 821–827.
  • Wright I.J., Reich P.B., Cornelissen J.H.C. 2005 – Assessing the generality of global leaf trait relationships – New Phytologist, 166: 485–496.
  • Xu Y.C., Shen Q.R., Ran W. 2003 – Content and distribution of forms of organic N in soil and particle size fractions after long-term fertilization – Chemosphere, 50: 739–745.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-cb205e9a-a6f4-4c49-8cb2-da1bfc006b60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.