PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 60 | 3 |

Tytuł artykułu

Extracellular xylanase production by Fusarium species in solid state fermentation

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Fusarium sp. has been shown to be a promising organism for enhanced production of xylanases. In the present study, xylanase production by 21 Fusarium sp. isolates (8 Fusarium culmorum, 4 Fusarium solani, 6 Fusarium verticillioides and 3 Fusarium equiseti) was evaluated under solid state fermentation (SSF). The fungal isolate Fusarium solani SYRN7 was the best xylanase producer among the tested isolates. The effects of some agriculture wastes (like wheat straw, wheat bran, beet pulp and cotton seed cake) and incubation period on xylanase production by F.solani were optimized. High xylanase production (1465.8 U/g) was observed in wheat bran after 96 h of incubation. Optimum pH and temperature for xylanase activity were found to be 5 and 50°C, respectively.

Wydawca

-

Rocznik

Tom

60

Numer

3

Opis fizyczny

p.209-212,fig.,ref.

Twórcy

autor
autor
  • Department of Molecular Biology and Biotechnology, AECS, P.O.Box 6091, Damascus, Syria
autor

Bibliografia

  • Alazem M. 2007. Characterization of Syrian Fusarium species by cultural characteristics and aggressiveness. Thesis, University of Damascus, Faculty of Agriculture. pp. 72.
  • Anon. 1996. Statview 4.5. USA: Abacus Concepts Corporation.
  • Arabi M.I.E., M. Jawhar and Y. Bakri. 2001. Effect of additional carbon sources and moisture level on xylanase production by Cochliobolus sativus in solid fermentation. Microbiology 80: 1–4.
  • Bailey M.J., P. Baily and R. Poutanen. 1992. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23: 257–270.
  • Bakri Y., P. Jacques and P. Thonart. 2003. Xylanase production by Penicillium canescens 10–10c in solid-state fermentation. Appl. Biochem. Biotech. 108: 737–748.
  • Belancic A., J. Scarpa, A. Peirano, R. Diaz, J. Steiner and J. Eyzaguirre. 1995. Penicillium purpurogenum produces several xylanase: Purification and properties of two of the enzymes. J. Biotechnol. 41: 71–79.
  • Chirstakopoullos P., D. Mamma, W. Nerinckxw, D. Kekos and B. Macris. 1999. Production and partial characterization of xylanase from Fusarium oxysporum. Bioresour. Technol. 58: 115–119.
  • Coral G., B. Arikan, M.N. Ünaldi and H. Korkmaz-Güvenmez. 2002. Some properties of thermostable xylanase from an Aspergillus niger strain. Ann. Microbiol. 52: 299–306.
  • Domsch K.H., W. Gams and T. H. Anderson. 1980. Compendium of soil fungi. Academic Press, London.
  • Guimaraes L.H.S., P.S. Nogueira, M. Michelin, A.C.S. Rizzatti, V.C. Sandrim, F.F. Zanoela, A.C.M.M. Aquino, A.B. Junior and M.L.T.M. Polizeli. 2006. Screening of filamentous fungi for production of enzymes of biotechnological interest. Brazil. J. Microbiol. 37: 474–480.
  • Haltrich D., B. Nidetzky, K.D. Kulbe, W. Steiner and S. Zupaneie. 1996. Production of fungal xylanases. Biores. Technol. 58: 137–161.
  • Kang S.W., Y.S. Park, J.S. Lee, S.I. Hong and S.W. Kim. 2004. Production of cellulose and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour. Technol. 91: 153–156.
  • Kiprop E. K., J.P. Baudoin, A.W. Mwangómbe, P.M. Kimani, G. Mergeai and A. Maquet. 2002. Characterization of Kenyan isolates of Fusarium udum from Pigeonpea [Cajanus cajan (L.) Millsp.] by cultural characteristics, aggressiveness and AFLP analysis. J. Phyto pathol. 150: 517–527.
  • Kitamoto N., S. Yoshino, K. Ohmiya and N. Tsukagoshi. 1999. Purification and characterization of overexpressed Aspergillus oryzae xylanase XynF1. Biosc. Biotechnol. Biochem. 63: 1791–1794.
  • Khan A., I. Ul-Haq, W.A. Butt and Ali S. 2003. Isolation and screening of Aspergillus isolates for xylanase biosynthesis. Biotech. 2: 185–190.
  • Khanna P., S.S. Sundari and N.J Kumar. 1995. Production, isolation and partial purification of xylanase from an Aspergillus sp. World J. Microbiol. Biotechnol. 11: 242–243.
  • Kulkarni N., A. Shendye and M. Rao. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23: 411–456.
  • Li Y., Z. Liu, F. Cui and Y.X.H. Zhao. 2007. Production of xylanase from a newly isolated Penicillium sp. ZH-30. World J. Microbiol. Biotechnol. 23; 837–843.
  • Medel, P., F. Baucells, M.I. Gracia, C. Blas and G.G. Mateos. 2002. Processing of barley and enzyme supplementation in diets for young pigs. Animal Feed Sci. Technol. 95: 113–122.
  • Miller G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Ann. Chem. 31: 426–428.
  • Nair S.G., R. Sindhu and S. Shashidhar. 2008. Purification and biochemical characterization of two xylanases from Aspergillus sydowii SBS 45. Appl. Biochem. Biotechnol. 149: 229–243.
  • Nelson P.E., T.A. Toussoun and W.F.O. Marasas. 1983. Fusarium Species: An Illustrated Manual for Identification. The Pennsylvania State Univ. Press, University Park.
  • Nwanma B., N. Onyike and P. E. Nelson. 1993. The distribution of Fusarium species in soils planted to millet and sorghum in Lesotho, Nigeria and Zimbabwe. Mycopathologia 121: 105–114.
  • Pandey A. 1994. Solid state fermentation: an overview, In: Solid state fermentation. Ashok Pandey, Wiley Eastern, New Deli.
  • Poorna C.A. and P. Prema. 2007. Production of cellulose-free endoxylanase from novel alkalophilic thermotolerent Bacillus pumilus by solid-state fermentation and its application in waste paper recycling. Bioresour Technol. 98: 485–490.
  • Romanowska A., K.P. Janowska and S. Bielecki. 2003. The application of fungal endoxylanase in bread-making. Commun. Agric. Appl. Biol. Sci. 68: 317–320.
  • Saha B.C. 2003. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30: 279–291.
  • Sudan R. and B.K. Bajaj. 2007. Production and biochemical characterization of xylanase from an alkalitolerant novel species Aspergillus niveus RS2. World J. Microbiol. Biotechnol. 23: 491–500.
  • Sunna A. and G. Antranikian. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17: 39–67.
  • Tanaka H., N. Toshihide., H. Sachio and O. Kazuyoshi. 2005. Purification and properties of an extracellular endo-1,4-β-xylanase from Penicillium citrinum and characterization of the encoding gene. Journal of Bioscience and Bioengineering. 100: 623–630.
  • Weiland P. 1988. Principles of solid state fermentation. In: F. Zadrazil, P. Reiniger (Eds), Treatment of lignocellulosics with white rot fungi, Elsevier, London, pp. 64–76.
  • Wong K.K.Y., C.S. James and S.H. Campion. 2002. Xylanase pre and post-treatments of bleached pulps decrease absorption coefficient. J. Pulp pap. Sci. 26: 377–383.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-bfbaa18d-3202-472e-8945-1d07dcd84c59
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.