PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 20 | 2 |

Tytuł artykułu

Chemical and microbial properties of sandy mine soils afforested with Scots pine and silver birch

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The objective of this study was to compare chemical and microbial properties of sandy mine soils under young Scots pine, silver birch, and mixed pine-birch forest stands. The measured properties included the contents of organic C (Corg) and total N (Nt), the Corg-to-Nt ratio, pH, microbial biomass, basal respiration, and activities of dehydrogenase, acid phosphomonoesterase, and urease. Community level physiological profiles (CLPPs) of soil bacteria were determined with BiologR test and genetic profiles with the DGGE method. Scots pine and silver birch did not affect the Corg and Nt contents in the studied mine soils. The soil under birch contained larger and more active microbial biomass than the soil under pine. Under the mixed stand, most of the microbial properties were intermediate between the pine and the birch stand. The DGGE profiling indicated different composition of soil bacteria under the birch stand compared to the other stands. Differences in CLPPs were less pronounced, probably due to functional redundancy of soil bacteria.

Wydawca

-

Rocznik

Tom

20

Numer

2

Opis fizyczny

p.285-291,fig.,ref.

Twórcy

autor
  • Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
autor
autor

Bibliografia

  • 1. BALDRIAN P., TROGL J; FROUZ J., ŠNAJDR J., VALAŠKOVA V., MERAHUTOVA V., CAJTHAML T., HERINKOVA J. Enzyme activities and microbial biomass in topsoil layer during spontaneous succession in spoil heaps after brown coal mining. Soil Biol. Biochem. 40, 2107, 2008.
  • 2. HARRIS J.A., GROGAN P., HOBBS R.J., Restoration ecology and the role of soil biodiversity. In: Biological diversity and function in soils. Cambridge University Press: New York, pp. 319-342, 2005.
  • 3. GIL-SOTRES F., TRASAR-CEPEDA C., LEIROS M.C., SEOANE S. Different approaches to evaluating soil quality using biochemical properties. Soil Biol. Biochem. 37, 877, 2005.
  • 4. MACHULLA G., BRUNS M.A., SCOW K.M. Microbial properties of mine spoil materials in the initial stages of soil development. Soil Sci. Soc. Am. J. 69, 1069, 2005.
  • 5. MUMMEY D.L., STAHL P.D., BUYER J.S. Microbial biomarkers as an indicator of ecosystem recovery following surface mine reclamation Appl. Soil. Ecol. 21, 251, 2002.
  • 6. NANNIPIERI P., ASCHER J., CECCHERINI M.T., LANDI L., PIETRAMELLARA G., RENELLA, G. Microbial diversity and soil functions. Eur. J. Soil Sci. 54, 655, 2003.
  • 7. PRIHA O., SMOLANDER A. Microbial biomass and activity in soil and litter under Pinus sylvestris, Picea abies and Betula pendula at originally similar field afforestation sites. Biol. Fertil. Soils 24, 45, 1997.
  • 8. SMOLANDER A., KITUNEN V. Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species. Soil Biol. Biochem. 34, 651, 2002.
  • 9. KANERVA S., KITUNEN V., LOPONEN J., SMOLANDER A. Phenolic compounds and terpenes in soil organic horizon layers under silver birch, Norway spruce and Scots pine. Biol. Fertil. Soils 44, 547, 2008.
  • 10. HUTTL R.F., WEBER E. Forest ecosystem development in post-mining landscapes: a case study of the Lusatian lignite district. Naturwissenschaften 88, 322, 2001.
  • 11. ANDERSON J.P.E., DOMSCH K.H. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 10, 215, 1978.
  • 12. VON MERSI W. Dehydrogenase activity with the substrate INT. In: Methods in soil biology. Springer-Verlag: Berlin, Heidelberg, pp. 243-245, 1996.
  • 13. MARGESIN R. Acid and alkaline phosphomonoesterase activity with substrate p-nitrophenyl phosphate. In: Methods in soil biology. Springer-Verlag: Berlin, Heidelberg, pp. 213-217, 1996.
  • 14. KANDELER E. Urease activity by colorimetric technique. In: Methods in soil biology. Springer-Verlag: Berlin, Heidelberg, pp. 171-174, 1996.
  • 15. INSAM H. A new set of substrates proposed for community characterization in environmental samples. In: Microbial Communities. Functional versus structural approaches. Springer: Berlin, pp. 260-261, 1997.
  • 16. INSAM H., GOBERNA M. Use of BiologR for community level physiological profiling (CLPP) of environmental samples. In: Molecular Microbial Ecology Manual, 2nd Edition, Kluwer Academic Publishers, pp. 853-860, 2004.
  • 17. YEATES C., GILLINGS M.R., DAVISON A.D., ALTAVILLA N., VEAL D.A. PCR amplification of crude microbial DNA extracted from soil. Letters Appl. Microbiol. 25, 303, 1997.
  • 18. EDENBORN S.L., SEXTONE A.J. DGGE fingerprinting of culturable soil bacterial communities complements cultureindependent analysis. Soil Biol. Biochem. 39, 1570, 2007.
  • 19. MUYZER G., DE WAAL E.C., UITTERLINDEN A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695, 1993.
  • 20. KRUSKAL J.B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 298, 1, 1964.
  • 21. REES G.N., BALDWIN D.S., WATSON G.O., PERRYMAN S., NIELSEN D.L. Ordination and significance testing of microbial community composition derived from terminal restriction fragment length polymorphisms: application of multivariate statistics. Ant. V. Leeuwenhoek 86, 339, 2004.
  • 22. CLARKE K.R., GREEN R.H. Statistical design and analysis for a ‘‘biological effects’’ study. Mar. Ecol. Prog. Ser. 46, 213, 1988.
  • 23. NORMAN G.R., STREINER D.L. Biostatistics: the bare essentials. BC Decker: New York, 2000.
  • 24. HURLBERT S.H. Pseudoreplication and the design of ecological field experiments. Ecol Monographs 54, 187, 1984.
  • 25. MENYAILO O.V., HUNGATE B.A., ZECH W. Tree species mediated soil chemical changes in a Siberian artificial Afforestation experiment. Plant Soil 242, 171, 2002.
  • 26. KIIKKILA O., KITUNEN V., SMOLANDER A. Dissolved soil organic matter from surface organic horizons under birch and conifers: Degradation in relation to chemical characteristics. Soil Biol. Biochem. 38, 737, 2006.
  • 27. ADAMCZYK B., KITUNEN V., SMOLANDER A. Protein precipitation by tannins in soil organic horizon and vegetation in relation to tree species. Biol. Fertil. Soils 45, 55, 2008.
  • 28. CHODAK M., NIKLIŃSKA M. The effect of different tree species on the chemical and microbial properties of reclaimed mine soils. Biol. Fertil. Soils 46, 555, 2010.
  • 29. ALLISON V.J., CONDRON L.M., PELTZER D.A., RICHARDSON S.J., TURNER B.L. Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil Biol. Biochem. 39, 1770, 2007.
  • 30. CHODAK M., PIETRZYKOWSKI M., NIKLIŃSKA M. Development of microbial properties in a chronosequence of sandy mine soils. Applied Soil Ecol. 41, 259, 2009.
  • 31. WIDMER F., FLIEβBACH A., LACZKO E., SCHULZEAURICH J., ZEYER J. Assessing soil biological characteristics: a comparison of bulk soil community DNA-, PLFA-, and BiologTM – analyses. Soil Biol. Biochem. 33, 1029, 2001.
  • 32. HARRIS J.A. Measurements of the soil microbial community for estimating the success of restoration. Eur. J. Soil Sci. 54, 801, 2003.
  • 33. PRIHA O., GRAYSTON S.J., HIUKKA R., PENNANEN T., SMOLANDER A. Microbial community structure and characteristics of the organic matter under Pinus sylvestris, Picea abies and Betula pendula at two forest sites. Biol. Fertil. Soils 33, 17, 20

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-a8652c8c-50b2-4618-a876-b8781588119b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.