PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 17 | 1 |

Tytuł artykułu

Developmental expression of P5 ATPase mRNA in the mouse

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
P5 ATPases (ATP13A1 through ATP13A5) are found in all eukaryotes. They are currently poorly characterized and have unknown substrate specificity. Recent evidence has linked two P5 ATPases to diseases of the nervous system, suggesting possible importance of these proteins within the nervous system. In this study we determined the relative expression of mouse P5 ATPases in development using quantitative real time PCR. We have shown that ATP13A1 and ATP13A2 were both expressed similarly during development, with the highest expression levels at the peak of neurogenesis. ATP13A3 was expressed highly during organogenesis with one of its isoforms playing a more predominant role during the period of neuronal development. ATP13A5 was expressed most highly in the adult mouse brain. We also assessed the expression of these genes in various regions of the adult mouse brain. ATP13A1 to ATP13A4 were expressed differentially in the cerebral cortex, hippocampus, brainstem and cerebellum while levels of ATP13A5 were fairly constant between these brain regions. Moreover, we demonstrated expression of the ATP13A4 protein in the corresponding brain regions using immunohistochemistry. In summary, this study furthers our knowledge of P5-type ATPases and their potentially important role in the nervous system.

Wydawca

-

Rocznik

Tom

17

Numer

1

Opis fizyczny

p.153-170,fig.,ref.

Twórcy

  • Department of Biology, Faculty of Science and Engineering, York University, 4700 Keele Street, Bethune College, Toronto, Ontario M3J-1P3, Canada
autor
autor

Bibliografia

  • 1. Lutsenko, S. and Kaplan, J.H. Organization of P-type ATPases: significance of structural diversity. Biochemistry (N.Y.) 48 (1995) 15607-15613.
  • 2. Axelsen, K.B. and Palmgren, M.G. Evolution of substrate specificities in the P-type ATPase superfamily. J. Mol. Evol. 1 (1998) 84-101.
  • 3. Kuhlbrandt, W. Biology, structure and mechanism of P-type ATPases. Nat. Rev. Mol. Cell Biol. 4 (2004) 282-295.
  • 4. Paulusma, C.C. and Oude Elferink, R.P. The type 4 subfamily of P-type ATPases, putative aminophospholipid translocases with a role in human disease. Biochim. Biophys. Acta 1-2 (2005) 11-24.
  • 5. Folmer, D.E., Elferink, R.P. and Paulusma, C.C. P4 ATPases - lipid flippases and their role in disease. Biochim. Biophys. Acta 7 (2009) 628-635.
  • 6. Cronin, S.R., Khoury, A., Ferry, D.K. and Hampton, R.Y. Regulation of HMG-CoA reductase degradation requires the P-type ATPase Cod1p/Spf1p. J. Cell Biol. 5 (2000) 915-924.
  • 7. Cronin, S.R., Rao, R. and Hampton, R.Y. Cod1p/Spf1p is a P-type ATPase involved in ER function and Ca2+ homeostasis. J. Cell Biol. 6 (2002) 1017- 1028.
  • 8. Vallipuram, J., Grenville, J. and Crawford, D.A. The E646D-ATP13A4 mutation associated with autism reveals a defect in calcium regulation. Cell. Mol. Neurobiol. 30 (2010) 233-246.
  • 9. Suzuki, C. and Shimma, Y.I. P-type ATPase spf1 mutants show a novel resistance mechanism for the killer toxin SMKT. Mol. Microbiol. 4 (1999) 813-823.
  • 10. Vashist, S., Frank, C.G., Jakob, C.A. and Ng, D.T. Two distinctly localized p-type ATPases collaborate to maintain organelle homeostasis required for glycoprotein processing and quality control. Mol. Biol. Cell 11 (2002) 3955- 3966.
  • 11. Jakobsen, M.K., Poulsen, L.R., Schulz, A., Fleurat-Lessard, P., Moller, A., Husted, S., Schiott, M., Amtmann, A. and Palmgren, M.G. Pollen development and fertilization in Arabidopsis is dependent on the MALE GAMETOGENESIS IMPAIRED ANTHERS gene encoding a type V P-type ATPase. Genes Dev. 22 (2005) 2757-2769.
  • 12. Suzuki, C. Immunochemical and mutational analyses of P-type ATPase Spf1p involved in the yeast secretory pathway. Biosci. Biotechnol. Biochem. 11 (2001) 2405-2411.
  • 13. Rand, J.D. and Grant, C.M. The thioredoxin system protects ribosomes against stress-induced aggregation. Mol. Biol. Cell 1 (2006) 387-401.
  • 14. Moller, A.B., Asp, T., Holm, P.B. and Palmgren, M.G. Phylogenetic analysis of P5 P-type ATPases, a eukaryotic lineage of secretory pathway pumps. Mol. Phylogenet. Evol. 2 (2008) 619-634.
  • 15. Kwasnicka-Crawford, D.A., Carson, A.R., Roberts, W., Summers, A.M., Rehnstrom, K., Jarvela, I. and Scherer, S.W. Characterization of a novel cation transporter ATPase gene (ATP13A4) interrupted by 3q25-q29 inversion in an individual with language delay. Genomics 2 (2005) 182-194.
  • 16. Schultheis, P.J., Hagen, T.T., O'Toole, K.K., Tachibana, A., Burke, C.R., McGill, D.L., Okunade, G.W. and Shull, G.E. Characterization of the P5 subfamily of P-type transport ATPases in mice. Biochem. Biophys. Res. Commun. 3 (2004) 731-738.
  • 17. Ramirez, A., Heimbach, A., Grundemann, J., Stiller, B., Hampshire, D., Cid, L.P., Goebel, I., Mubaidin, A.F., Wriekat, A.L., Roeper, J., Al-Din, A., Hillmer, A.M., Karsak, M., Liss, B., Woods, C.G., Behrens, M.I. and Kubisch, C. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet. 10 (2006) 1184-1191.
  • 18. Di Fonzo, A., Chien, H.F., Socal, M., Giraudo, S., Tassorelli, C., Iliceto, G., Fabbrini, G., Marconi, R., Fincati, E., Abbruzzese, G., Marini, P., Squitieri, F., Horstink, M.W., Montagna, P., Libera, A.D., Stocchi, F., Goldwurm, S., Ferreira, J.J., Meco, G., Martignoni, E., Lopiano, L., Jardim, L.B., Oostra, B.A., Barbosa, E.R. and Bonifati, V. ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology 19 (2007) 1557-1562.
  • 19. Lin, C.H., Tan, E.K., Chen, M.L., Tan, L.C., Lim, H.Q., Chen, G.S. and Wu, R.M. Novel ATP13A2 variant associated with Parkinson disease in Taiwan and Singapore. Neurology 21 (2008) 1727-1732.
  • 20. Rakovic, A., Stiller, B., Djarmati, A., Flaquer, A., Freudenberg, J., Toliat, M.R., Linnebank, M., Kostic, V., Lohmann, K., Paus, S., Nurnberg, P., Kubisch, C., Klein, C., Wullner, U. and Ramirez, A. Genetic association study of the P-type ATPase ATP13A2 in late-onset Parkinson's disease. Mov. Disord. 3 (2009) 429-433.
  • 21. Santos, A.R. and Duarte, C.B. Validation of internal control genes for expression studies: effects of the neurotrophin BDNF on hippocampal neurons. J. Neurosci. Res. 16 (2008) 3684-3692.
  • 22. de Kok, J.B., Roelofs, R.W., Giesendorf, B.A., Pennings, J.L., Waas, E.T., Feuth, T., Swinkels, D.W. and Span, P.N. Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab. Invest. 1 (2005) 154-159.
  • 23. Thal, S.C., Wyschkon, S., Pieter, D., Engelhard, K. and Werner, C. Selection of endogenous control genes for normalization of gene expression analysis after experimental brain trauma in mice. J. Neurotrauma 7 (2008) 785-794.
  • 24. Mwacharo, J., Dunachie, S.J., Kai, O., Hill, A.V., Bejon, P. and Fletcher, H.A. Quantitative PCR evaluation of cellular immune responses in Kenyan children vaccinated with a candidate malaria vaccine. PloS One 12 (2009) e8434.
  • 25. Xing, W., Deng, M., Zhang, J., Huang, H., Dirsch, O. and Dahmen, U. Quantitative evaluation and selection of reference genes in a rat model of extended liver resection. J. Biomol. Tech. 2 (2009) 109-115.
  • 26. Boda, E., Pini, A., Hoxha, E., Parolisi, R. and Tempia, F. Selection of reference genes for quantitative real-time RT-PCR studies in mouse brain. J. Mol. Neurosci. 3 (2009) 238-253.
  • 27. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A. and Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3 (2002) RESEARCH0034.
  • 28. Daston, G., Faustman, E., Ginsberg, G., Fenner-Crisp, P., Olin, S., Sonawane, B., Bruckner, J., Breslin, W. and McLaughlin, T.J. A framework for assessing risks to children from exposure to environmental agents. Environ. Health Perspect. 2 (2004) 238-256.
  • 29. Rodier, P.M. Chronology of neuron development: animal studies and their clinical implications. Dev. Med. Child Neurol. 4 (1980) 525-545.
  • 30. Angevine, J.B.,Jr. Time of neuron origin in the diencephalon of the mouse. An autoradiographic study. J. Comp. Neurol. 2 (1970) 129-187.
  • 31. Gerfen, C.R., Baimbridge, K.G. and Thibault, J. The neostriatal mosaic: III. Biochemical and developmental dissociation of patch-matrix mesostriatal systems. J. Neurosci. 12 (1987) 3935-3944.
  • 32. Bayer, S.A., Wills, K.V., Triarhou, L.C. and Ghetti, B. Time of neuron origin and gradients of neurogenesis in midbrain dopaminergic neurons in the mouse. Exp. Brain Res. 2 (1995) 191-199.
  • 33. Kawano, H., Ohyama, K., Kawamura, K. and Nagatsu, I. Migration of dopaminergic neurons in the embryonic mesencephalon of mice. Brain Res. Dev. Brain Res. 1-2 (1995) 101-113.
  • 34. Carper, R.A., Moses, P., Tigue, Z.D. and Courchesne, E. Cerebral lobes in autism: early hyperplasia and abnormal age effects. Neuroimage 4 (2002) 1038-1051.
  • 35. Carper, R.A. and Courchesne, E. Localized enlargement of the frontal cortex in early autism. Biol. Psychiatry 2 (2005) 126-133.
  • 36. Courchesne, E., Saitoh, O., Yeung-Courchesne, R., Press, G.A., Lincoln, A.J., Haas, R.H. and Schreibman, L. Abnormality of cerebellar vermian lobules VI and VII in patients with infantile autism: identification of hypoplastic and hyperplastic subgroups with MR imaging. AJR Am. J. Roentgenol. 1 (1994) 123-130.
  • 37. Hashimoto, T., Tayama, M., Murakawa, K., Yoshimoto, T., Miyazaki, M., Harada, M. and Kuroda, Y. Development of the brainstem and cerebellum in autistic patients. J. Autism Dev. Disord. 1 (1995) 1-18.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-65bb4752-f6b3-4f96-8e6f-a979a76b1551
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.