PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 61 | 5 |

Tytuł artykułu

Brain and cardiovascular diseases: common neurogenic background of cardiovascular, metabolic and inflammatory diseases

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In spite of significant progress in pharmacotherapy the incidence of newly diagnosed cases of cardiovascular diseases and cardiovascular morbidity is alarmingly high. Treatment of hypertension or heart failure still remains a serious challenge. Continuous attempts are made to identify the mechanisms that decide about susceptibility to pathogenic factors, and to determine effectiveness of a specific therapeutic approach. Coincidence of cardiovascular diseases with metabolic disorders and obesity has initiated intensive research for their common background. In the recent years increasing attention has been drawn to disproportionately greater number of depressive disorders and susceptibility to stress in patients with coronary artery disease. An opposite relationship, i.e. a greater number of sudden cardiovascular complications in patients with depression, has been also postulated. Progress in functional neuroanatomy and neurochemistry provided new information about the neural network responsible for regulation of cardiovascular functions, metabolism and emotionality in health and under pathological conditions. In this review we will focus on the role of neuromodulators and neurotransmitters engaged in regulation of the cardiovascular system, neuroendocrine and metabolic functions in health and in pathogenesis of cardiovascular diseases and obesity. Among them are classical neurotransmitters (epinephrine and norepinephrine, serotonin, GABA), classical (CRH, vasopressin, neuropeptide Y) and newly discovered (orexins, apelin, leptin IL-1ßeta, TNF-alpha, ghrelin) neuropeptides, gasotransmitters, eicozanoids, endocannabinoids, and some other compounds involved in regulation of neuroendocrine, sympatho-adrenal and parasympathetic nervous systems. Special attention is drawn to those factors which play a role in immunology and inflammatory processes. Interaction between various neurotransmitter/neuromodulatory systems which may be involved in integration of metabolic and cardiovascular functions is analyzed. The survey gives evidence for significant disturbances in release or action of the same mediators in hypertension heart failure, obesity, diabetes mellitus, metabolic syndrome, starvation, chronic stress, depression and other psychiatric disorders. With regard to the pathogenic background of the cardiovascular diseases especially valuable are the studies showing inappropriate function of angiotensin peptides, vasopressin, CRH, apelin, cytokines and orexins in chronic stress, cardiovascular and metabolic diseases. The studies surveyed in this review suggest that multiple brain mechanisms interact together sharing the same neural circuits responsible for adjustment of function of the cardiovascular system and metabolism to current needs.

Wydawca

-

Rocznik

Tom

61

Numer

5

Opis fizyczny

p.509-521,fig.,ref.

Twórcy

  • The Medical University of Warsaw, 26/28 Krakowskie Przedmiescie Street, 00-927 Warsaw, Poland
autor
autor

Bibliografia

  • Abboud FM. The sympathetic system in hypertension. State-of-the art review. Hypertension 1982; 4: 208-225.
  • Abrahamson EE, Moore RY. The posterior hypothalamic area: chemoarchitecture and afferent connections. Brain Res 2001; 889: 1-22.
  • Aicher SA, Milner TA, Pickel VM, Reis DJ. Anatomical substrates for baroreflex sympathoinhibition in the rat. Brain Res Bull 2000; 51: 107-110.
  • Cao WH, Morrison SF. Disinhibition of rostral raphe pallidus neurons increases cardiac sympathetic nerve activity and heart rate. Brain Res 2003; 980: 1-10.
  • Dampney RAL. Functional organization of central nervous pathways regulating the cardiovascular system. Physiol Rev 1994; 74: 323-364.
  • Dampney RAL. The subretrofacial vasomotor nucles; anatomical, chemical and pharmacological properties and role in cardiovascular regulation. Prog Neurobiol 1994; 42: 197-227.
  • Dampney RA, Coleman MJ, Fontes MA, et al. Central mechanisms underlying short- and long-term regulation of the cardiovascular system. Clin Exp Pharmacol Physiol 2002; 29: 261-268.
  • Farkas E, Jansen AS, Loewy AD. Periaqueductal gray matter input to cardiac-related sympathetic premotor neurons. Brain Res 1998; 792: 179-192.
  • Hardy SG. Hypothalamic projections to cardiovascular centers of the medulla. Brain Res Rev 2001; 894: 233-240.
  • Holmes A, Heilig M, Rupniak NM, Steckler T, Griebel G. Neuropeptide systems as novel therapeutic targets for depression and anxiety disorders. Trends Pharmacol Sci 2003; 24: 580-588.
  • Horiuchi J, McDowall LM, Dampney RA. Differential control of cardiac and sympathetic vasomotor activity from the dorsomedial hypothalamus. Clin Exp Pharmacol Physiol 2006; 33: 1265-1268.
  • Li YF, Patel KP. Paraventricular nucleus of the hypothalamus and elevated sympathetic activity in heart failure: the altered inhibitory mechanisms. Acta Physiol Scand 2003; 177: 17-26.
  • Lipski J, Kanjhan R, Kruszewska B, Smith M. Barosensitive neurons in the rostral ventrolateral medulla of the rat in vivo: morphological properties and relationship to C1 adrenergic neurons. Neuroscience 1995; 69: 601-618.
  • Longhurst JC. Neural regulation of the cardiovascular system. In: Fundamental Neuroscience. LR Squire, FE Bloom, SK McConnel, JL Roberts, NC Spitzer, MJ Zigmond (eds). San Diego, Academic Press/Elsevier Science, 2003, pp. 935-966.
  • Sun MK. Central neural organization and control of sympathetic nervous system in mammals. Prog Neurobiol 1995; 47: 157-233.
  • Owens NC, Verberne AJ. Medial prefrontal depressor response: involvement of rostral and caudal ventrolateral medulla in the rat. J Auton Nerv Syst 2000; 78: 86-93.
  • Persson PB. Modulation of cardiovascular control mechanisms and their interaction. Physiol Rev 1996; 76: 193-244.
  • Powley TL. Central control of autonomic functions: organization of the autonomic nervous system. In: Fundamental Neuroscience, LR Squire, FE Bloom, SK McConnell, JL Roberts, NC Spitzer, MJ Zigmond (eds). San Diego, Academic Press/Elsevier Science, 2003, pp. 1027-1036.
  • Resstel L, Correa F. Involvement of the medial prefrontal cortex in central cardiovascular modulation in the rat. Auton Neurosci 2006; 126-127: 130-138.
  • Semenenko FM, Lumb BM. Excitatory projections from the anterior hypothalamus to periaqueductal gray neurons that project to the medulla: a functional anatomical study. Neuroscience 1999; 94: 163-174.
  • Spyer KM. Central nervous mechanisms contributing to cardiovascular control. Annual review prize lecture. J Physiol (Lond) 1994; 474: 1-19.
  • Trzebski A. Arterial chemoreceptor reflex and hypertension. Hypertension 1992; 19: 562-566.
  • Gianaros PJ, Derbyshire SW, May JC, Siegle GJ, Gamalo MA, Jennings JR. Anterior cingulate activity correlates with blood pressure during stress. Psychophysiology 2005; 42: 627-635.
  • Guyenet PG, Koshiya N, Huangfu D, Baraban SC, Stornetta RL, Li YW. Role of medulla oblongata in generation of sympathetic and vagal outflows. Prog Brain Res 1996; 107: 127-144
  • Nisimaru N. Cardiovascular modules in the cerebellum. Jpn J Physiol 2004; 54: 431-448.
  • Tavares RF, Correa FM. Role of the medial prefrontal cortex in cardiovascular responses to acute restraint in rats. Neuroscience 2006; 143: 231-240.
  • Zhu JN, Yung WH, Kwok-Chong Chow B, Chan YS, Wang JJ. The cerebellar-hypothalamic circuits: potential pathways underlying cerebellar involvements in somatic-visceral integration. Brain Res Rev 2006; 52: 93-106.
  • Kitchen MA, Collins HL, DiCarlo SE, Scislo TJ, O’Leary DS. Mechanisms mediating NTS P2x receptor-evoked hypotension: cardiac output vs. total peripheral resistance. Am J Physiol Heart Circ Physiol 2001; 281: H2198-H2203.
  • Scislo TJ, O’Leary DS. Mechanisms mediating regional sympathoactivatory responses to stimulation of NTS A(1) adenosine receptors. Am J Physiol Heart Circ Physiol 2002; 283: H1588-H1599.
  • Scislo TJ, Augustyniak RA, O’Leary DS. Differential arterial baroreflex regulation of renal, lumbar, and adrenal sympathetic nerve activity in the rat. Am J Physiol 1998; 275: R995-R1002.
  • Bago M, Marson L, Dean C. Serotonergic projections to the rostroventrolateral medulla from midbrain and raphe nuclei. Brain Res 2002; 945: 249-258.
  • Buccafusco JJ. The role of central cholinergic neurons in the regulation of blood pressure in experimental hypertension. Pharmacol Rev 1996; 48: 179-211.
  • Chen CT, Hwang LL, Chang JK, Dun NJ. Pressor effects of orexins injected intracisternally and to rostral ventrolateral medulla of anesthetized rats. Am J Physiol 2000; 278: R692-R697.
  • Deolindo M, Pelosi G, Tavares R, Correa F. The ventrolateral periaqueductal gray is involved in the cardiovascular response evoked by L-glutamate microinjection into the lateral hypothalamus of anesthetized rats. Neurosci Lett 2008; 430: 124-129.
  • Dreifuss JJ, Raggenbass M, Charpak S, Dubois-Dauphin M, Tribollet E. A role of central oxytocin in autonomic functions: its action in the motor nucleus of the vagus nerve. Brain Res Bull 1988; 20: 765-770.
  • Kubo T, Goshima Y, Hata H, Misu Y. Evidence that endogenous catecholamines are involved in alpha-2 adrenoceptor-mediated modulation of the baroreceptor reflex in the nucleus tractus solitarii of the rat. Brain Res 1990; 526: 313-317.
  • Lundberg JM. Pharmacology of cotransmission in the autonomic nervous system: integrative aspects on amines, neuropeptides, adenosine triphosphate, amina acids and nitric oxide. Pharmacol Rev 1996; 48: 113-178.
  • Szczepanska-Sadowska E. Neuropeptides in neurogenic disorders of the cardiovascular control. J Physiol Pharmacol 2006; 57(Suppl 11): S31-S53.
  • Ufnal M, Sikora M. The role of brain gaseous transmitters in the regulation of the circulatory system. Curr Pharm Biotechnol 2010: (in print).
  • Wright JW, Harding JW. Brain angiotensin receptor subtypes in the control of the physiological behavioral responses. Neurosci Biobehav Rev 1994; 18: 21-53.
  • Stanley S, Wynne K, McGowan B, Bloom S. Hormonal regulation of food intake. Physiol Rev 2005; 85: 1131-1158.
  • Woods SC, Striker M. Food intake and metabolism. In: Fundamental Neuroscience, LR Squire, FE Bloom, SK McConnell, JL Roberts, NC Spitzer, MJ Zigmond (eds). San Diego, Academic Press/Elsevier Science, 2003, pp. 991-1009.
  • Asarian L, Geary N. Modulation of appetite by gonadal steroid hormones. Philos Trans R Soc Lond B Biol Sci 2006; 361: 1251-1263.
  • Chaudhri O, Small C, Bloom S. Gastrointestinal hormones regulating appetite. Philos Trans R Soc Lond B Biol 2006; 361: 1187-1209.
  • Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev 2005; 26: 439-451.
  • Murphy KG, Dhillo WS, Bloom SR. Gut peptides in the regulation of food intake and energy homeostasis. Endocr Rev 2006; 27: 719-727.
  • Trayhurn P, Bing C. Appetite and energy balance signals from adipocytes. Philos Trans R Soc Lond B Biol Sci 2006; 361: 1237-1249.
  • Toepel U, Knebel J-F, Hudry J, Coutre J, Murray MM. The brain tracks of energetic value of food images. Neuroimage 2009; 44: 967-974.
  • Woods SC, Lutz TA, Geary N, Langhans W. Pancreatic signals controlling food intake; insulin, glucagon and amylin. Philos Trans R Soc Lond B Biol Sci 2006; 361: 1219-1235.
  • Gomez-Pinilla F. Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci 2008; 9: 568-578.
  • Sowden GL, Huffman JC. The impact of mental illness on cardiac outcomes: a review for the cardiologist. Int J Cardiol 2009; 132: 30-37.
  • Kyrou I, Tsigos C. Chronic stress, visceral obesity and gonadal dysfunction. Hormones 2008; 7: 287-293.
  • De Vriendt T, Moreno LA, De Henauw S. Chronic stress and obesity in adolescents: scientific evidence and methodological issues for epidemiological research. Nutr Metab Cardiovasc Dis 2009; 19: 511-519.
  • Selye H. The evolution of stress concept. Am Sci 1973; 61: 692-699.
  • Carrasco GA, Van de Kar. Neuroendocrine pharmacology of stress. Eur J Pharmacol 2003; 463: 235-272.
  • Dampney RA, Horiuchi J, McDowall LM. Hypothalamic mechanisms coordinating cardiorespiratory function during exercise and defensive behaviour. Auton Neurosci 2008; 142: 3-10.
  • de Kloet ER. Hormones, brain and stress. Endocr Regul 2003; 37: 51-68.
  • Morin SM, Stotz-Potter EH, DiMicco JA. Injection of muscimol in dorsomedial hypothalamus and stress-induced Fos expression in paraventricular nucleus. Am J Physiol 2001; 280: R1276-R1284.
  • Palkovits M. Stress-induced expression of co-localized neuropeptides in hypothalamic and amygdaloid neurons. Eur J Pharmacol 2000; 405: 161-166.
  • Swaab DF, Bao AM, Lucassen PJ. The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev 2005; 4: 141-194.
  • Tavares RF. Pelosi GG, Correa FM. The paraventricular nucleus of the hypothalamus is involved in cardiovascular responses to acute restraint stress in rats. Stress 2009; 12: 178-185.
  • Frasure-Smith N, Lesperance F. Recent evidence linking heart diseases and depression. Can J Psychiatry 2006; 51: 730-737.
  • Grippo AJ, Santos CM, Johnson RF, et al. Increased susceptibility to ventricular arrhythmias in a rodent model of experimental depression. Am J Physiol 2004; 286: R619-R626.
  • Harshfield GA, Dong Y, Kapuku GK, Zhu H, Hanevold CD. Stress-induced sodium retention and hypertension: a review and hypothesis. Curr Hypertens Rep 2009; 11: 29-34.
  • Johnson AK, Grippo AJ. Sadness and broken hearts: neurohumoral mechanisms and co-morbidity of ischemic heart disease and psychological depression. J Physiol Pharmacol 2006; 57(Suppl 11): 5-29.
  • Kendler KS, Karkowski LM, Prescott CA. Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry 1999; 156: 837-841.
  • Wittstein IS. Acute stress cardiomyopathy Curr Heart Fail Rep 2008; 5: 61-68.
  • Galynker II, Cai J, Ongseng F, Finestone H, Dutta E, Serseni D. Hypofrontality and negative symptoms in major depressive disorders. J Nucl Med 1998; 39: 608-612.
  • Mayberg HS. Frontal lobe dysfunction in secondary depression. J Neuropsychiatry Clin Neurosci 1994; 6: 428-442.
  • Erhardt A, Muller MB, Rodel A, et al.. Consequences of chronic social stress on behaviour and vasopressin gene expression in the PVN of DBA/2O1aHsd mice- influence of treatment with the CRHR1-antagonist R121919/NBI 30775. J Psychopharmacol 2009; 23: 31-39.
  • Keck ME, Kern N, Erhardt AI, et al. Combined effects of exogenic polymorphisms in CRHR1 and AVPR1B genes in a case/control study for panic disorder. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 1196-1204.
  • Mayorov DN, Head GA. AT1 receptors in the RVLM mediate pressor responses to emotional stress in rabbits. Hypertension 2003; 41: 1168-1173.
  • Saavedra JM, Ando H, Armando I, et al. Anti-stress and anti-anxiety effects of centrally acting angiotensin II AT1 receptor antagonists. Regul Pept 2005; 128: 227-238.
  • Saavedra JM, Benicky J. Brain and peripheral angiotensin II play a major role in stress. Stress 2007; 10: 185-193.
  • Szczepanska-Sadowska E. Role of neuropeptides in central control of cardiovascular responses to stress. J Physiol Pharmacol 2008; 59(Suppl 8): S61-S89.
  • Wsol A, Cudnoch-Jedrzejewska A, Szczepanska-Sadowska E, Kowalewski S, Puchalska L. Oxytocin in the cardiovascular responses to stress. J Physiol Pharmacol 2008; 59(Suppl 8): S123-S127.
  • Holstege, G, Bandler R, Saper CB. The emotional motor system. Amsterdam Elsevier 1996.
  • Kagiyama S, Fukuhara M, Matsumura K, Lin Y, Fujii K, Iida M. Central and peripheral cardiovascular actions of apelin in conscious rats. Regul Pept 2005; 125: 55-59.
  • Cudnoch-Jedrzejewska A, Dobruch J, Puchalska L, Szczepanska-Sadowska E. Interaction of AT1 receptors and V1a receptors-mediated effects in the central cardiovascular control during the post-infarct state Regul Pept 2007; 142: 86-94.
  • Dobruch J, Cudnoch-Jedrzejewska A, Szczepanska-Sadowska E. Enhanced involvement of brain vasopressin V1 receptors in cardiovascular responses to stress in rats with myocardial infarction. Stress 2005; 8: 273-284.
  • Huang BS, White RA, Ahmad M, et al. Central infusion of aldosterone synthase inhibitor attenuates left ventricular dysfunction and remodeling in rats after myocardial infarction, Cardiovasc Res 2009; 81: 574-581.
  • Lon S, Szczepanska-Sadowska E, Szczypaczewska M. Evidence that centrally released arginine vasopressin is involved in central pressor action of angiotensin II. Am J Physiol 1996; 279: H167-H173.
  • Noszczyk B, Lon S, Szczepanska-Sadowska E. Central cardiovascular effects of AVP analogs with V1, V2 and “V3” agonistic and antagonistic properties in the conscious dog. Brain Res 1993; 610: 115-126.
  • Smith PM, Connolly BC, Ferguson AV. Microinjections of orexin in the rat nucleus tractus solitarius causes increases in blood pressure. Brain Res 2002; 950: 261-267.
  • Stepniakowski K, Budzikowski AS, Lon S, Szczepanska-Sadowska E. Central cardiovascular effects of AVP and ANP in normotensive and spontaneously hypertensive rats. J Auton Nerv System 1994; 47: 33-43.
  • Szczepanska-Sadowska E, Paczwa P, Lon S, Ganten D. Increased pressor function of central vasopressinergic system in hypertensive renin transgenic rats. J Hypertens 1998; 16: 1505-1514.
  • Tanida M, Kaneko H, Shen J, Nagai K. Involvement of the histaminergic system in renal sympathetic and cardiovascular responses to leptin and ghrelin. Neurosci Lett 2007; 413: 88-92.
  • Toba K, Ohta M, Kimura T, Nagano K, Ito S, Ouchi Y. Role of brain vasopressin in regulation of blood pressure. Progr Brain Res 1998; 119: 337-349.
  • Zhang Q, Yao F, Raizada MK, O’Rourke ST, Sun C. Apelin gene transfer into the rostral ventrolateral medulla induces chronic blood pressure elevation in normotensive rats. Circ Res 2009; 104: 1421-1428.
  • Hallbeck G. The somatic motor system. In The Emotional Motor System, G Holstege, R Bandler, Saper CB. (eds.), Amsterdam, Elsevier, 1996, pp. 9-26.
  • Cushing HI. The reaction to posterior pituitary extract (pituitrin) when introduced into the cerebral ventricles. Proc Natl Acad Sci USA 1931; 17: 163-170.
  • Pittman QJ, Lawrence D, McLean L. Central effects of arginine vasopressin on blood pressure in rats. Endocrinology 1982; 110: 1058-1060.
  • Berecek KH, Webb RI, Brody MJ. Evidence for a central role of vasopressin in cardiovascular regulation. Am J Physiol 1983; 244: H852-H859.
  • Ganten D, Unger T, Lang RE. The dual role of angiotensin and vasopressin as plasma hormones and neuropeptides in cardiovascular regulation. J Pharmacol 1985; 16(Suppl 2): 51-68.
  • Pavan de Arruda Camargo GM, Abrao Saad W, de Arruda Camargo LA. Vasopressin and angiotensin receptors of the medial septal area in the control of mean arterial pressure induced by vasopressin. J Renin Angiotensin Aldosterone Syst 2008; 9: 133-138.
  • Budzikowski AS, Paczwa P, Szczepanska-Sadowska E. Central V1 AVP receptors are involved in cardiovascular adaptation to hypervolemia in WKY but not in SHR. Am J Physiol 1996; 271: H1057-H1064.
  • Jackiewicz E, Szczepanska-Sadowska E, Dobruch J. Altered expression of angiotensin AT1a and vasopressin V1a receptors and nitric oxide synthase mRNA in the brain of rats with renovascular hypertension. J Physiol Pharmacol 2004; 55: 725-737.
  • Swords BH, Wyss JM, Berecek KH. Central vasopressin receptors are upregulated by deoxycorticosterone acetate. Brain Res 1991; 559: 10-16.
  • Paczwa P, Budzikowski AS, Szczepanska-Sadowska E. Enhancement of central pressor effect of AVP in SHR and WKY rats by intracranial NG-nitro-L-arginine. Brain Res 1997; 748: 51-61.
  • Cudnoch-Jedrzejewska A, Szczepanska-Sadowska E, Dobruch J, Gomolka R, Puchalska L. Brain vasopressin V(1) receptors contribute to enhanced cardiovascular responses to acute stress in chronically stressed rats and rats with myocardial infarction. Am J Physiol 2010; 298: R672-R680.
  • Muders F, Riegger GA, Bahner U, Palkovits M. The central vasopressinergic system in experimental left ventricle hypertrophy and dysfunction. Prog Brain Res 2002; 139: 275-279.
  • Bujis RM, Kalsbeck A. Anatomy and physiology of vasopressin pathways: from temperature regulation to corticotropin-inhibiting neurotransmission. In: Neurohypophysis. Recent Progress of Vasopressin and Oxytocin Research. Amsterdam, Elsevier 1995, pp. 57-65.
  • Frank E, Landgraf R. The vasopressin system - from antidiuresis to psychopathology. Eur J Pharmacol 2008: 583: 226-242.
  • Stojicic S, Milutinovic-Smiljanic S, Sarenac O, et al. Blockade of central vasopressin receptors reduces the cardiovascular response to acute stress in freely moving rats. Neuropharmacology 2008; 54: 824-836.
  • Wsol A, Cudnoch-Jedrzejewska A, Szczepanska-Sadowska E, Kowalewski S, Puchalska L. Central oxytocin modulation of acute stress-induced cardiovascular responses after myocardial infarction in the rat. Stress 2009; 12: 517-525.
  • Bader M, Ganten D. It’s renin in the brain: transgenic animals elucidate the brain renin-angiotensin system. Circ Res 2002; 90: 8-10.
  • Bottari SP, de Gasparo M, Stecklings UM, Levens NR. Angiotensin II receptor subtypes: characterization, signalling mechanisms, and possible physiological implications. Front Neuroendocrinol 1993; 14: 123-171.
  • Ferguson AV, Washburn DLS. Angiotensin II: a peptidergic neurotransmitter in central autonomic pathways. Prog Neurobiol 1998; 54: 169-192.
  • Hegarty AA, Hayword LF, Felder RB. Influence of circulating angiotensin II and vasopressin on neurons of the nucleus of the solitary tract. Am J Physiol 1996; 270: R675-R681.
  • Martin SM, Malkinson TJ, Veale WL, Pittman QJ. The action of centrally administered arginine vasopressin on blood pressure in the conscious rabbit. Brain Res 1985; 348: 137-145.
  • Hoffman WE, Phillips MI, Schmid PG, Falcon J, West JF. Antidiuretic hormone release and the pressor response to central angiotensin II and cholinergic stimulation. Neuropharmacology 1977; 16: 463-472.
  • Phillips MI, Shen L, Richards EM, Raizada MK. Immunohistochemical mapping of angiotensin AT1 receptors in the brain. Regul Pept 1993; 44: 95-107.
  • Phillips MI, Sumners C. Angiotensin II in central nervous system physiology. Regul Pept 1998; 78: 1-11.
  • Kagiyama S, Varela A, Phillips MI, Galli SM. Antisense inhibition of brain renin-angiotensin system decreased blood pressure in chronic 2-kidney, 1 clip hypertensive rats. Hypertension 2001; 37: 371-375.
  • Kubo T, Ikezawa A, Kambe T, Hagiwara Y, Fukumori R. Renin antisense injected intraventricularly decreases blood pressure in spontaneously hypertensive rats. Brain Res Bull 2001; 56: 23-28.
  • Felder RB, Francis J, Zhang ZH, Wie SG, Weiss RM, Johnson AK. Heart failure and the brain: new perspectives. Am J Physiol Regul Integr Comp Physiol 2003; 284: R259-R276.
  • Leenen FH, Yuan B, Huang BS. Brain “ouabain” and angiotensin II contribute to cardiac dysfunction after myocardial infarction. Am J Physiol 1999; 277: H1786-H1792.
  • Wang H, Huang BS, Ganten D, Leenen FH. Prevention of sympathetic and cardiac dysfunction after myocardial infarction in transgenic rats deficient in brain angiotensinogen. Circ Res 2004; 94: 843.
  • Zhang W, Huang BS, Leenen FH. Brain renin-angiotensin system and sympathetic hyperactivity in rats after myocardial infarction. Am J Physiol 1999; 276: H1608-H1615.
  • Zucker IH, Wang R, Piquett RU, Liu JL, Patel KP. The regulation of sympathetic outflow in heart failure. The roles of angiotensin II, nitric oxide and exercise training. Ann NY Acad Sci 2001; 940: 431-443.
  • Samson WK, Gossnell B, Chang JK, Resch ZT, Murphy TC. Cardiovascular regulatory actions of the hypocretins in brain. Brain Res 1999; 831: 248-253.
  • De Oliveira CV, Rosas-Arellano MP, Solano-Flores LP, Ciriello J. Cardiovascular effects of hypocretin-1 in nucleus of the solitary tract. Am J Physiol 2003; 284: H1369-H1377.
  • Lin Y, Matsumura K, Tsuchihashi T, Abe I, Iida M. Chronic central infusion of orexin-A increases arterial pressure in rats. Brain Res Bull 2002; 57: 619-622.
  • Matsumura K, Tsuchihashi T, Abe I. Central orexin-A augments sympathoadrenal outflow in conscious rabbits. Hypertension 2001; 37: 1382-1387.
  • Shirasaka T, Kunitake T, Takasaki M, Kannan H. Neuronal effects of orexins: relevant to sympathetic and cardiovascular functions. Regul Pept 2002; 104: 91-95.
  • Smith PM, Connolly BC, Ferguson AV. Microinjection of orexin into the rat nucleus tractus solitarius causes increases in blood pressure. Brain Res 2002; 950: 261-267.
  • Ciriello J, De Oliveira CV. Cardiac effects of hypocretin-1 in nucleus ambiguus. Am J Physiol Regul Integr Comp Physiol 2003; 284: R1611-R1620.
  • Pitkin SL, Maguire JJ, Bonner TI, Davenport AP. Apelin receptor nomenclature, distribution, pharmacology, and function. International Union of Basic and Clinical Pharmacology, LXXIV. Pharmacol Rev 2010; 62: 331-342.
  • Tatemoto K, Hosoya M, Habata Y, et al. Isolation and characterization of novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun 1998; 251: 471-476.
  • Tobin VA, Bull PM, Arunachalam S, O’Carroll AM, Ueta Y, Ludwig M. The effects of apelin on the electrical activity of hypothalamic magnocellular vasopressin and oxytocin neurons and somatodendritic peptide release. Endocrinology 2008; 149: 6136-6145.
  • Newson MJ, Roberts EM, Pope GR, Lolait SJ, O’Carroll AM. The effects of apelin on the hypothalamic-pituitary-adrenal axis neuroendocrine function are mediated through corticotrophin-releasing factor- and vasopressin-dependent mechanisms. J Endocrinol 2009; 202: 123-139.
  • Reaux A, De Mota N, Skultetyova I, et al. Physiological role of a novel neuropeptide, apelin, and its receptor in the rat brain. J Neurochem 2001; 77: 1085-1096.
  • Kagiyama S, Fukuhara M, Matsumura K, Lin Y , Fujii K, Iida M. Central and peripheral cardiovascular actions of apelin in conscious rats. Regul Pept 2005; 125: 55-59.
  • Seyedabadi M, Goodchild AK, Pilowsky PM. Site-specific effects of apelin13 in the rat medulla oblongata on arterial pressure and respiration. Auton Neurosci 2002; 101: 32-38.
  • Zhang Q, Yao F, Raizada MK, O’Rorke ST, Sun C. Apelin gene transfer into the rostral ventrolateral medulla induces chronic blood pressure elevation in normotensive rats. Circ Res 2009: 104: 1421-1428.
  • Berthoud HR. Vagal and hormonal gut-brain communication: from satiation to satisfaction. Neurogastroenterol Motil 2008; 20(Suppl 1): 64-72.
  • Lechin F, van der Dijs B. Central nervous system circuitry involved in the hyperinsulinism syndrome. Neuroendocrinology 2006; 84: 222-234.
  • Semjonous NM, Smith KL, Parkinson JR, et al. Coordinated changes in energy intake and expenditure following hypothalamic administration of neuropeptides involved in energy balance. Int J Obes (Lond) 2009; 33: 775-785.
  • Ellacot KL, Cone RD. The role of the central melanocortin system in the regulation of food intake and energy homeostasis; lessons from mouse models. Philos Trans R Soc Lond B Biol Sci 2006; 361: 1265-1274.
  • Beltowski J. Apelin and visfatin: unique “beneficial” adipokines upregulated in obesity? Med Sci Monit 2006; 12: RA112-RA119.
  • Gil-Campos M, Aguilera CM, Canete R, Gil A. Ghrelin: a hormone regulating food intake and energy homeostasis. Br J Nutr 2006; 96: 201-226.
  • Gualillo O, Gonzalez-Juanatey JR, Lago F. The emerging role of adipokines as mediators of cardiovascular function: physiologic and clinical perspectives. Trends Cardiovasc Med 2007; 17: 275-283.
  • Karmazyn M, Purdham DM, Rajapurohitam V, Zeidan A. Signalling mechanisms underlying the metabolic and other effects of adipokines on the heart. Cardiovasc Res 2008; 79: 279-286.
  • Soriguer F, Garrido-Sanchez L, Garcia-Serrano S, et al. Apelin levels are increased in morbidly obese subjects with type 2 diabetes mellitus. Obes Surg 2009; 19: 1574-1580.
  • Valle A, Hoggard N, Adams AC, Roca P, Speakman JR. Chronic central administration of apelin-13 over 10 days increses food intake, body weight, locomotor activity and body temperature in C57BL/6 mice. J Neuroendocrinol 2008; 20: 79-84.
  • Takayama K, Iwazaki H, Yakabi K, Ro S. Distribution of c-Fos immunoreactive neurons in the brain intraperitoneal injection of apelin-12 in Wistar rats. Neuroscience Lett 2008; 431: 247-250.
  • Clarke KJ Whitaker KW, Reyes TM. Diminished metabolic responses to centrally-administered apelin-13 in diet-induced obese rats fed a high-fat diet. J Neuroendocrinol 2009; 21: 83-89.
  • Rayalam S, Della-Fera MA, Krieg PA, Cox CM, Robins A, Baile CA. A putative role for apelin in the etiology of obesity. Biochem Biophys Res Commun 2008; 368: 815-819.
  • Llorens-Cortes C, Kordon S. Jacques Benoit lecture: the neuroendocrine view of the angiotensin and apelin systems. J Neuroendocrinol 2008; 20: 279-289.
  • Aravich PF, Sladek CD. Vasopressin and glucoprivic-feeding behavior: a new perspective of an old peptide. Brain Res 1986; 385: 245-252.
  • Aravich PF, Rieg TS, Ahmed I, Lauterio TJ. Fluoxetine induces vasopressin and oxytocin abnormalities in food-restricted rats given voluntary exercise: relationship to anorexia nervosa. Brain Res 1993; 612: 180-189.
  • Kirk CJ, Rodrigues LM, Hems DA. The influence of vasopressin and related peptides on glycogen phosphorylase activity and phosphatidyloinositol metabolism in hepatocytes. Biochem J 1979; 178: 493-496.
  • Milles JJ, Baylis PH, Wright AD. Plasma vasopressin during insulin withdrawal in insulin-dependent diabetes. Diabetologia 1981; 20: 607-611.
  • Zerbe RL, Vinicor F, Robertson GL. Plasma vasopressin in uncontrolled diabetes mellitus. Diabetes 1979; 28: 503-508.
  • Aoyagi T, Birumachi J, Hiroyama M, et al. Alteration of glucose homeostasis in V1a vasopressin receptor-deficient mice. Endocrinology 2007; 148: 2075-2084.
  • Nakamura K, Aoyagi T, Hiroyama M, et al. Both V(1A) and V(1B) vasopressin receptors deficiency result in impaired glucose tolerance. Eur J Pharmacol 2009; 613: 182-188.
  • Enhorning S, Leosdottir M, Wallstrom P, et al. Relation between vasopressin 1a gene variance, fat intake, and diabetes. Am J Clin Nutr 2009; 89: 400-406.
  • Andre A, Gonthier MP. The endocannabinoid system: its roles in energy balance and potential as target for obesity treatment. Int J Biochem Cell Biol 2010; 142: 1788-1801.
  • Deedewania P. The endocannabinoid system and cardiometabolic risk: effects of CB1 receptor blockade on lipid metabolism. Int J Cardiol 2009; 131: 305-312.
  • De Kloet AD, Woods SC. Endocannabinoids and their receptors as targets for obesity therapy. Minireview. Endocrinology 2009; 150: 2531-2536.
  • Di Marzo V, Ligresti A, Cristino C. The endocannabinoid system as a link between homeostatic and hedonic pathways involved in energy balance regulation. Int J Obes (Lond) 2009; 33(Suppl 2): S18-S24.
  • Ge X, Yang Z, Duan L, Rao Z. Evidence for involvement of the neural pathway containing the peripheral vagus nerve, medullary visceral zone and central amygdaloid nucleus in neuroimmunomodulation. Brain Res 2001; 914: 149-158.
  • Goehler LE, Gaykema RP, Opitz N, Reddaway R, Badr N, Lyte M. Activation of vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain Behav Immun 2005; 19: 334-344.
  • Nadeau S, Rivest S. Effects of circulation tumor necrosis factor on the neuronal activity and expression of the genes encoding the tumor necrosis factor receptors (p55 and p75) in the rat brain: a view from the blood-brain barrier. Neuroscience 1999; 93: 1449-1464.
  • Pan W, Kastin AJ, Bell RL, Olson RD. Upregulation of tumor necrosis factor alpha transport across the blood-brain barrier after acute compressive spinal cord injury. J Neurosci 1999; 19: 3649-3655.
  • Pan W, Kastin AJ. Tumor necrosis factor and stroke: role of the blood-brain barrier. Prog Neurobiol 2007; 83: 363-374.
  • Osburg B, Peiser C, Domling D, et al. Effect of endotoxin on expression of TNF receptors and transport of TNF-alpha at the blood-brain barrier of the rat. Am J Physiol 2002; 283: E899-E908.
  • Boos CJ, Lip GY. Is hypertension an inflammatory process? Curr Pharm Des 2006; 12: 1623-1635.
  • Diwan A, Tran T, Misra A, Mann DL. Inflammatory mediators and the failing heart: a translational approach. Curr Mol Med 2003; 3: 161-182.
  • Teli T, Xanthaki D, Karalis KP. Regulation of appetite and insulin signaling in inflammatory states. Ann N Y Acad Sci 2006; 1083: 319-328.
  • Cottone S, Vadala A, Vella MC, Mule G, Contorno A, Cerasola G. Comparison of tumour necrosis factor and endothelin-1 between essential and renal hypertensive patients. J Hum Hypertens 1998; 12: 351-354.
  • Navarro-Gonzalez JF, Mora C, Muros M, Jarque A, Herrera H, Garcia J. Association of tumor necrosis factor-alpha with early target organ damage in newly diagnosed patients with essential hypertension. J Hypertens 2008; 26: 2168-2175.
  • Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL. Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarionone trail (VEST). Circulation 2001; 103: 2055-2059.
  • Lainscak M, Anker SD. Prognostic factors in chronic heart failure. A review of serum biomarkers, metabolic changes, symptoms, and scoring systems. Herz 2009; 34: 141-147.
  • Nozaki N, Yamaguchi S, Shirakabe M, Nakamura H, Tomoike H. Soluble tumor necrosis factor receptors are elevated in relation to severity of congestive heart failure. Jpn Circ 1997; 61: 657-664.
  • Zaremba J, Losy J. Early TNF-alpha levels correlate with ischaemic stroke severity. Acta Neurol Scand 2001; 104: 288-295.
  • Welsh P, Lowe GD, Chalmers J, et al. Associations of proinflammatory cytokines with the risk of recurrent stroke. Stroke 2008; 39: 2226-2230.
  • Francis J, Zhang ZH, Weiss RM, Felder RB. Neural regulation of the proinflammatory cytokine response to acute myocardial infarction. Am J Physiol 2004: 287: H791-H797.
  • Kang YM, Zhang ZH, Xue B, Weiss RM, Felder RB. Inhibition of brain proinflammatory cytokine synthesis reduces hypothalamic excitation in rats with ischemia-induced heart failure. Am J Physiol 2008: 295: H227-H236.
  • Kannan H, Tanaka Y, Kunitake T, Ueta Y, Hayashida Y, Yamashita H. Activation of sympathetic outflow by recombinant human interleukin-1 beta in conscious rats. Am J Physiol 1996; 270: R479-R485.
  • Kimura T, Yamamoto T, Ota K, et al. Central effects of interleukin-1 on blood pressure, thermogenesis, and the release of vasopressin, ACTH, and atrial natriuretic peptide. Ann N Y Acad Sci 1993; 689: 330-345.
  • Ufnal M, Zera T, Szczepanska-Sadowska E. Blockade of angiotensin II AT1 receptors inhibits pressor action of centrally administered interleukin-1beta in Sprague Dawley rats. Neuropeptides 2005; 39: 581-585.
  • Guggilam A, Haque M, Kerut EK, et al. TNF-lpha blockade decreases oxidative stress in the paraventricular nucleus and attenuates sympathoexcitation in heart failure rats. Am J Physiol 2007; 293: H599-H609.
  • Guggilam A, Patel KP, Haque M, Ebenezer PJ, Kapusta DR, Francis J. Cytokine blockade attenuates sympathoexcitation in heart failure: cross-talk between nNOS, AT-1R and cytokines in the hypothalamic paraventricular nucleus. Eur J Heart Fail 2008; 10: 625-634.
  • Kang YM, Ma Y, Elks C, et al. Cross-talk between cytokines and renin-angiotensin in hypothalamic paraventricular nucleus in heart failure: role of nuclear factor-kappaB. Cardiovasc Res 2008; 79: 671-678.
  • Kang YM, He RL, Yang LM, et al. Brain tumour necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovasc Res 2009; 83: 737-746.
  • Yu Y, Zhang ZH, Wei SG, et al. Central gene transfer of interleukin-10 reduces hypothalamic inflammation and evidence of heart failure in rats after myocardial infarction. Circ Res 2007; 101: 304-312.
  • Ufnal M, Sikora M, Szczepanska-Sadowska E. Interleukin-1 receptor antagonist reduces the magnitude of the pressor response to acute stress. Neurosci Lett 2008; 448: 47-51.
  • Ufnal M, Dudek M, Zera T, Szczepanska-Sadowska E. Centrally administered interleukin-1 beta sensitizes to the central pressor action of angiotensin II. Brain Res 2006; 1100: 64-72.
  • Zera T, Ufnal M, Szczepanska-Sadowska E. Central TNF-alpha elevates blood pressure and sensitizes to central pressor action of angiotensin II in the infarcted rats. J Physiol Pharmacol 2008; 59(Suppl 8): 117-121.
  • Sriramula S, Haque M, Majid DS, Francis J. Involvement of tumor necrosis factor-alpha in angiotensin II-mediated effects on salt appetite, hypertension, and cardiac hypertrophy. Hypertension 2008; 51: 1345-1351.
  • Sriramula S, Cardinale J, Pariaut R, Francis J. Central nervous system blockade of tumor necrosis factor attenuates angiotensin II induced hypertension. Circulation 2008; 118: S383.
  • Dean B, Tawadros N, Scarr E, Gibbons AS. Regionally-specific changes in levels of tumour necrosis factor in the dorsolateral prefrontal cortex obtained postmortem from subjects with major depressive disorder. J Affect Disord 2010; 120: 245-248.
  • Goshen I, Kreisel T, Ben-Menachem-Zidon O, et al. Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol Psychiatry 2008; 13: 717-728.
  • Himmerich H, Fulda S, Linseisen J, et al. Depression, comorbidities and the TNF-alpha system. Eur Psychiatry 2008; 23: 421-429.
  • Bluthe RM, Pawlowski M, Suarez S, et al. Synergy between tumor necrosis factor alpha and interleukin-1 in the induction of sickness behavior in mice. Psychoneuroendocrinology 1994; 19: 197-207.
  • Mastronardi C, Whelan F, Yildiz OA, et al. Caspase 1 deficiency reduces inflammation-induced brain transcription. Proc Natl Acad Sci USA. 2007; 104: 7205-7210.
  • Simen BB, Duman CH, Simen AA, Duman RS. TNF-alpha signaling in depression and anxiety: behavioral consequences of individual receptor targeting. Biol Psychiatry 2006; 59: 775-785.
  • Khairova RA, Machado-Vieira R, Du J, Manji HK. A potential role for pro-inflammatory cytokines in regulating synaptic plasticity in major depressive disorder. Int J Neuropsychopharmacol 2009; 12: 561-578.
  • Grippo AJ, Francis J, Beltz TG, Felder RB, Johnson AK. Neuroendocrine and cytokine profile of chronic mild stress-induced anhedonia. Physiol Behav 2005; 84: 697-706.
  • Grippo AJ, Francis J, Weiss RM, Felder RB, Johnson AK. Cytokine mediation of experimental heart failure-induced anhedonia. Am J Physiol 2003; 284: R666-R673.
  • O’Connor KA, Johnson JD, Hansen MK, et al. Peripheral and central proinflammatory cytokine response to a severe acute stressor. Brain Res 2003; 991: 123-132.
  • Zou CJ, Liu JD, Zhou YC. Roles of central interleukin-1 on stress-induced-hypertension and footshock-induced-analgesia in rats. Neurosci Lett 2001; 311: 41-44.
  • Plata-Salaman CR. Central nervous system mechanisms contributing to the cachexia-anorexia syndrome. Nutrition 2000; 16: 1009-1012.
  • Amaral ME, Barbuio R, Milanski M, et al. Tumor necrosis factor-alpha activates signal transduction in hypothalamus and modulates the expression of pro-inflammatory proteins and orexigenic/anorexigenic neurotransmitters. J Neurochem 2006; 98: 203-212.
  • De Souza CT, Araujo EP, Bordin S, et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 2005; 146: 4192-4199.
  • Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 2008; 135: 61-73.
  • Liang H, Yin B, Zhang H, et al. Blockade of tumor necrosis factor (TNF) receptor type 1-mediated TNF-lpha signaling protected Wistar rats from diet-induced obesity and insulin resistance. Endocrinology 2008; 149: 2943-2951.
  • Rizk NM, Joost HG, Eckel J. Increased hypothalamic expression of the p75 tumor necrosis factor receptor in New Zealand obese mice. Horm Metab Res 2001; 33: 520-524.
  • Thaler JP, Choi SJ, Schwartz MW, Wisse BE. Hypothalamic inflammation and energy homeostasis: resolving the paradox. Front Neuroendocrinol 2010; 31: 79-84.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-59b9ce6b-504d-4712-995c-e4cb2a1d2afe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.