PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 62 | 4 |

Tytuł artykułu

Biochemiczne mechanizmy neurotoksyczności kadmu

Autorzy

Treść / Zawartość

Warianty tytułu

EN
Biochemical mechanisms of neurotoxicity caused by cadmium

Języki publikacji

PL

Abstrakty

PL
Kadm (Cd) zaliczany do metali ciężkich jest jednym z ważniejszych składników zanieczyszczających środowisko życia ludzi i zwierząt. Ekspozycja środowiskowa na kadm może prowadzić do wchłaniania jego związków do organizmu i toksycznego oddziaływania na układ nerwowy. W artykule przedstawiono różne poglądy dotyczące biochemicznych mechanizmów neurotoksycznego działania kadmu. Opisano zaburzenia w komórkowym systemie antyoksydacyjnym, wytwarzanie reaktywnych form tlenu i azotu, zaburzenia w produkcji energii w szlakach metabolicznych, zmiany w metabolizmie amin biogennych, aminokwasów neuroprzekaźnikowych i jonów wapnia oraz inhibicję białek enzymatycznych.
EN
Cadmium (Cd), which belongs to the heavy metals, is one of the major polluting component of human and animal environment. Exposure to cadmium can lead to absorption of the compounds to the organism and consequently, the toxic effects in the nervous system. The paper presents various views on the biochemical mechanisms of neurotoxicity caused by cadmium. This paper describes the disturbances in the cellular antioxidant system, generation of reactive oxygen and nitrogen species, changes in energy production in the metabolic pathways, changes in the metabolism of biogenic amines, neurotransmitter amino acids and calcium ions and inhibition of enzymatic proteins.

Wydawca

-

Rocznik

Tom

62

Numer

4

Opis fizyczny

s.357-363,bibliogr.

Twórcy

autor
  • Zakład Biochemii i Fizjologii Roślin, Instytut Hodowli i Aklimatyzacji Roślin - Państwowy Instytut Badawczy, Radzików k/Warszawy, 05-870 Błonie

Bibliografia

  • 1. Agar A., Yargicoglu P., Edremitlioglu M., Kara C., Oguz Y.: The effect of cadmium (Cd) treatment on somatosensory evoked potentials (SEPs) and conduction velocity in alloxane-induced diabetic rats: relation to lipid peroxidation. J. Basic Clin. Physiol. Pharmacol. 1999, 10, 41–56.
  • 2. Agar A., Yargicoglu P., Sentürk U.K., Izgüt-Uysal V.N.: Effect of cadmium- induced lipid peroxidation on EEG spectral components. J. Basic Clin. Physiol. Pharmacol. 1999, 10 (1), 29–40.
  • 3. Agency for Toxic Substances and Diseases Registry U.S. Dept. of Health (2008). http://www.atsdr.cdc.gov/toxprofiles/tp5.pdf (01.11.2008)
  • 4. Ahammadsahib K. I., Ramamurthi R., Desaiah, D.: Mechanism of inhibition of rat brain (Na +-K +)-stimulated adenosine triphosphatase reaction by cadmium and methyl mercury. Journal of Biochemical Toxicology 1987, 2, 169–180.
  • 5. Allen P.: Accumulation profiles of cadmium and their modification with mercury and lead in the edible tissues of Oreochromis aureus. Fresh Environ Bull 1995, 2, 745-751.
  • 6. Andersson H., Petersson-Grawé K., Lindqvist E., Luthman J., Oskarsson A., Olson L.: Low-level cadmium exposure of lactating rats causes alterations in brain serotonin levels in the offspring. Neurotoxicol. Teratol. 1997, 19, 105–115.
  • 7. Anggard E.: Nitric oxide: mediator, murder, and medicine. The Lancet 1994, 343, 1199–1206.
  • 8. Bagchi D., Vuchetich P.J., Bagchi M., Hassoun E.A., Tran M.X., Tang L., Stohs S.J.: Induction of oxidative stress by chronic administration of sodium dichromate (chromium VI) and cadmium chloride (cadmium II) to rats. Free Radic. Biol. Med. 1997, 22 (3), 471–478.
  • 9. Bartosz G.: Druga twarz tlenu. Wolne rodniki w przyrodzie. Wyd. PWN, Warszawa 2006.
  • 10. Blazka M. E., Shaikh Z. A.: Sex differences in hepatic and renal cadmium accumulation and metallothionein induction. Role of estradiol. Biochem. Pharmacol. 1991, 41, 775–780.
  • 11. Carageorgiou H., Boviatsis St., Carageorgiou-Kassaveti M., Pantos C., Messari I., Papadopoulou-Daifoti Z.: Proceedings of the “2nd International symposium on trace elements in human: New perspectives”. In: Dopamine, serotonin and their metabolite levels in certain rat brain areas after acute and chronic administration of cadmium. Eds.: Ermidou-Pollet S., Pollet S. Athens, Greece, 7–9/1999, 2000, 723–730.
  • 12. Carageorgiou H., Tzotzes V., Pantos C., Mourouzis C., Zarros A., Tsakiris, S.: In vivo and in vitro Effects of Cadmium on Adult Rat Brain Total Antioxidant Status, Acetylcholinesterase, (Na+,K+)-ATPase and Mg2+-ATPase Activities: Protection by L-Cysteine. Basic & Clinical Pharmacology & Toxicology 2004, 94, 112–118.
  • 13. Casalino E., Calzaretti G., Sblano C., Landriscina C.: Molecular inhibitory mechanism of antioxidant enzymes in rat liver and kidney by cadmium. Toxicology 2002, 179, 37–50.
  • 14. Casalino E., Calzaretti G., Sblano S., Landriscina C.: Cadmium-dependent enzyme activity alteration is not imputable to lipid peroxidation. Arch. Biochem. Biophys. 2000, 383, 288–295.
  • 15. Ciani F., Contestabile A., Minelli G. Quaglia A.: Ultrastructural localization of alkaline phosphatase in cultures of nervous tissue in vitro. Journal of Neurocytology 1973, 2, 105-116.
  • 16. Crofton P. M.: Biochemistry of alkaline phosphatase isoenzymes. CRC Critical Reviews in Clinical Laboratory Sciences 1982, 161-194.
  • 17. Ermis E., Imanovic L.: Heavy metals-cadmium. http:// www.unihohenheim-de/fangmeier/M7101/Cadmium.pdf (01.11.2008).
  • 18. Esterbauer H., Schaur R.J., Zollner H.: Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 1991, 11, 81–128.
  • 19. Evans P.H.: Free radicals in brain metabolism and pathology. Br. Med. Bull. 1995, 49, 577-587.
  • 20. Ewers U.: Standard guidelines and legislative regulations concerning metals and their compounds in the environment. VCH weinheom 1991, 787.
  • 21. Fern R., Black J. A., Ransom B. R., Waxman S. G.: Cd(2+) induced injury in CNS white matter. J. Neurophysiol. 1996, 76, 3264–3273.
  • 22. Giesy J. P., Weiner J.G.: Preduency distribution of trace metal concentration in five freshwater fishes Transamer fish Soc. 1977, 106, 393-403.
  • 23. Gomez G., Boas R., Gomara B., Jimenez B., Benito V., Montoro R., Hiraldo F., Gonzalez M.J.: Influence of mine tailing accident near Donana National Park (Spain) on heavy metals and arsenic accumulation in 14 species of waterfowl (1998-2000). Arch. Environ. Contam. Toxicol. 2004, 47(4), 521-529.
  • 24. Grawé K. P.: Lactational transfer of cadmium in rodents- -CNS effects in the offspring. Doctoral thesis, Swedish University of Agriculture Sciences. 2003, 18-19.
  • 25. Gupta A., Gupta A., Shukla G.S.: Development of brain free radical scavenging system and lipid peroxidation under the influance of gestational and lactational cadmium exposure. Hum. Exp. Toxicol. 1995, 14 (5), 428–433.
  • 26. Gutiérrez-Reyes E.Y., Albores A., Ríos C.: Increase of striatal dopamine release by cadmium in nursing rats and its prevention by dexamethasone-induced metallothionein. Toxicology 1998, 131, 145-154.
  • 27. Hart R. P., Rose C. S., Hamer R. M.: Neuropsychological effects of occupational exposure to cadmium. J. Clin. Exp. Neuropsychol. 1989, 11, 933–943.
  • 28. Harvey Z., Wedley S., Findlay I., Sidell M., Pullar J.: ω-Agatoxin IVA identifies a signle calcium channel subtype which contributes to the potassium induced release of acetylcholine, 5-HT, dopamine, GABA and glutamate from rat brain slices. Neuropharmacology 1996, 35, 385–392.
  • 29. Hirano A.: Cytopathology of amyotrophic lateral sclerosis. Adv. Neurol. 1991, 56, 91-101.
  • 30. Horiguchi H., Oguma E., Sasaki S., Miyamoto K., Ikeda Y., Mahida M., Kayama F.: Comprehensive study of the effects of age, iron deficiency, diabetes mellitus, and cadmium burden on dietary cadmium absorption in cadmium-exposed female Japanese farmers. Toxicol. Appl. Pharmacol. 2004, 196, 114–123.
  • 31. Kelm M.: Nitric oxide metabolism and breakdown. Biochem. Biophys. Acta 1999, 1411, 273–289.
  • 32. Kumar L. C. A., Vincent S., Ambrose T.: Uptake and peristence of the heavy metal cadmium in tissues of the fresh water fish Cyprinus carpio. Poll Res. 1994, 13, 361-364.
  • 33. Lafuente A., Esquifino A.I.: Effects of oral cadmium exposure through puberty on plasma prolactin and gonadotropin levels and amino acid contents in various brain areas in pubertal male rats. Neurotoxicology 2002, 23, 207-213.
  • 34. Lafuente A., Esquifino A.I.: Possible role of glutamate, aspartate, glutamine, GABA or taurine on cadmium toxicity on the hypothalamic pituitary axis activity in adult male rats. Biometals 2002, 15, 183-187.
  • 35. Lafuente A., González-Carracedo A., Márquez N., Pazo D., Esquifino A.I.: Oral cadmium exposure throughout puberty does not inhibit secretion of prolactin, GH and ACTH through dopamine metabolism changes in male rat. J. Trace Elem. Med. Biol. 2002, 16, 249-254.
  • 36. Lafuente A., González-Carracedo A., Romero A., Cabaleiro T., Esquifino A.I.: Toxic effects of cadmium on the regulatory mechanism of dopamine and serotonin on prolactin secretion in adult male rats. Toxicol. Lett. 2005, 155, 87-96.
  • 37. Lafuente A., González-Carracedo A., Romero A., Cabaleiro T., Esquifino A.I.: Toxic effects of cadmium on GABA and taurine content in different brain areas of adult male rats. J. Physiol. Biochem. 2005, 61, 439-446.
  • 38. Lafuente A., González-Carracedo A., Romero A., Cano P., Esquifino A.I.: Cadmium exposure differentially modifies the circadian patterns of norepinephrine at the median eminence and plasma LH, FSH and testosterone levels. Toxicol. Lett. 2004, 146, 175-182.
  • 39. Lafuente A., González-Carracedo A., Romero A., Esquifino A.I.: Effect of cadmium on 24-h variations in hypothalamic dopamine and serotonin metabolism in adult male rats. Exp. Brain Res. 2003, 149, 200-206.
  • 40. Lopez E., Figueroa S., Oset-Gasque M. J., Gonzalez M. P.: Apoptosis and necrosis: Two distinct events induced by cadmium in cortical neurons in culture. Br. J. Pharmacol. 2003, 138, 901–911.
  • 41. Maeda H., Akaike T.: Nitric oxide and oxigen radicals in infection, inflammation, and cancer. Biochemistry (Moscow) 1998, 63, 845–865.
  • 42. Matsuura H., Hirose I. Fujita K.: Electron microscopic localization of alkaline phosphatase in the trigeminal ganglion of the rat. Histochemie 1970, 23, 91-97.
  • 43. Miller M., Wayland M., Bortolotti G.: Hemograms for and nutritional condition of migrant bald eagles tested for exposure to lead. Journal of Wildlife Diseases 2001, 37(3), 481-488.
  • 44. Minami A., Takeda A., Nishibaba D., Takefuta S., Oka N.: Cadmium toxicity in synaptic neurotransmission in the brain. Brain Res. 2001, 894, 336–339.
  • 45. Murphy V.A.: Cadmium: acute and chronic neurological disorders. Mineral and metal: neurotoxicology (M. Yasui M. J. Strong K. Ota i in., red.). 1997, 229-240.
  • 46. O’Callaghan J. P., Miller D.: Diethyldithiocarbamate increases distribution of cadmium to brain but prevents cadmium-induced neurotoxicity. Brain Res. 1986, 370, 354–358.
  • 47. Okuda B., Iwamoto Y., Tachibana H., Sugita M.: Parkinsonism after acute cadmium poisoning. Clin. Neurol. Neurosurg. 1997, 99, 263–265.
  • 48. Ong W.Y., He X., Chua L.H., Ong C.N.: Increased uptake of divalent metals lead and cadmium into the brain after kainite-induced neuronal injury. Exp. Brain Res. 2006, 173, 468-474.
  • 49. Packer L., Hiramatsu M., Yoshikawa T.: Free radicals in Brain Physiology and Disorders. Academic Press 1996.
  • 50. Poli G., Cadenas E., Packer L.: Free Radicals in Brain Pathophysiology. Marcel Dekker New York 2000.
  • 51. Pourahmad J., O’Brien P. J.: A comparison of hepatocyte cytotoxic mechanisms for Cu2+ and Cd2+. Toxicology 2000, 143, 263–273.
  • 52. Reeves P. G., Chaney R. L.: Mineral status of female rats affect the absorption and organ distribution of dietary cadmium derived from edible sunflower kernels (Helianthus annuus L.). Environ. Res. 2001, 85, 215–225.
  • 53. Satarug S., Baker J. R., Urbenjapol S., Haswell-Elkins M., Reilly P. E. B., Wiliams D. J., Moore M.R.: A global perspective on cadmium pollution and toxicity in non- -occupationally exposed population. Toxicol. Lett. 2003, 137, 65–83.
  • 54. Satarug S., Moore M. R.: Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environ. Health. Perspect. 2004, 112, 1099–1103.
  • 55. Shaffi S. A., Manohar Y. R., Choudhary S.L., Ghani N.: Bioassay of cadmium and its effect on differential distribution of dehydrogenases in different brain regions in Labeo rohita (HAM). Physiol. Res. 1999, 48, 221-226.
  • 56. Shirazi S. P., Colston K. W., Butterworth P. J.:Alkaline phosphatase: a possible transport protein for inorganic phosphate. Biochemical Society Transactions 1978, 6, 933-935.
  • 57. Shukla A., Shukla G.S., Srimal R.C.: Cadmium-induced alterations in blood-brain barrier permeability and its possible correlation with decreased microvessel antioxidant potential in rat. Hum. Exp. Toxicol. 1996, 15, 400–405.
  • 58. Sinet P.M., Ceballos-Picot I.: Role of free radicals in Alzheimer’s and Down’s syndrome. Free Radicals in the Brain: Aging, Neurological and Mental Disorders. 1992, 91-98.
  • 59. Squadrito G.L., Pryor W.A.: Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radical Biol. Med. 1998, 392–403.
  • 60. Stohs S. J., Bagchi D., Hassoun E., Bagchi M.: Oxidative mechanisms in the toxicity of chromium and cadmium ions. J. Environ. Pathol. Toxicol. Oncol. 2001, 20, 77–88.
  • 61. Sugimura K., Mizutani A.: Histochemical and cytochemical studies of alkaline phosphatase activity in the synapses of rat brain. Histochemistry 1979, 61, 123-129.
  • 62. Tatrai E., Kovacikiva A., Hudak Z., Adamis G., Ungvary G.: Comparative in vitro toxicity of cadmium and lead on redox cycling in type II pneumocytes. J. Appl. Toxicol. 2001, 21, 479–483.
  • 63. Traczyk W.Z., Trzebski A. (red.).: Fizjologia człowieka z elementami fizjologii stosowanej i klinicznej. PZWL, 2007, Warszawa.
  • 64. Valasserg G.T.: Oxidation of vitamin E, vitamin C and thiols in rat brain synaptosomes by peroxynitrite. Biochem. Pharmacol. 1996, 52, 579–586.
  • 65. Vig P.J., Nath R.: In vivo effects of cadmium on calmodulin and calmodulin regulated enzymes in rat brain. Biochem Int. 1991, 23 (5), 927-34.
  • 66. Waisberg M., Joseph P., Hale B., Beyersmann D.: Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 2003. 192, 95–117.
  • 67. Webster W. S., Valois A. A.: The toxic effects of cadmium on the neonatal mouse CNS. J. Neuropathol. Exp. Neurol. 1981, 40, 247–257.
  • 68. Wilson P. D., Franks L. M.: Alkaline phosphatase in mitochondria. Cell Biology International Reports 1977, 1, 85-92.
  • 69. Wong K. L., Klaassen C. D.: Neurotoxic effects of cadmium in young rats. Toxicol. Appl. Pharmacol. 1982, 63, 330–337.
  • 70. Yargicoglu P., Agar A., Oguz Y., Izgüt-Uysal V.N., Sentürk U.K., Oner G.: The effect of developmental exposure to cadmium (Cd) on visual evoked potentials (VEPs) and lipid peroxidation. Neurotoxicol. Teratol. 1997, 19 (3), 209–312.
  • 71. Zisapel N., Haklai R.: Localization of an alkaline phosphatase and other synaptic vesicle proteins. Neuroscience 1980, 5, 2297-2303.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-40ad45ea-cb79-4f90-aaa7-32f0e3c0f10d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.