PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 56 | 1 |

Tytuł artykułu

Morphological disparity in Plio-Pleistocene large carnivore guilds from Italian Peninsula

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Communities of large mammals exhibit changes in morphological diversity through space and time; changes that are possibly correlated to distinct aspects of the physical environment. Here, I explore shape changes in the trophic apparatus of large carnivore guilds, comparing extant communities with Quaternary ones, from peninsular Italy. Mandibular shape is quantified through geometric morphometrics and its disparity is computed for each carnivore guild. Patterns of morphospace occupation through space and time reveal that extant carnivore guilds are negatively influenced by number of artiodactyls. Very productive ecosystems show low values of morphological disparity because species tend to occupy central regions of the morphospace rather than extreme areas. Disparity of mandibular corpus shape remains relatively stable throughout the Quaternary in the large carnivore communities of the Italian peninsula. They exhibit similar values to extant guilds because the trophic apparatus did not evolved important morphological novelties. Interestingly, carnivore guilds of the late Pliocene (3.5 Ma) and early Pleistocene (0.8 Ma) show over−dispersed or random morphospace occupation because of a depleted fauna, precluding successive structural changes. The same applies for the extant European carnivore guild as a result of recent extinctions without replacement.

Wydawca

-

Rocznik

Tom

56

Numer

1

Opis fizyczny

p.33-44,fig.,ref.

Twórcy

autor
  • Hull York Medical School, The University of Hull, Loxley Building, Cottingham Road Hull HU6 7RX, U.K.

Bibliografia

  • Adams, D.C., Rohlf, F.J., and Slice, D.E. 2004. Geometric morphometrics: ten years of progress following the “revolution”. Italian Journal of Zoology 71: 5–16. [CrossRef]
  • Alroy, J. 2001. A multispecies overkill simulation of the end−Pleistocene megafaunal mass extinction. Science 292: 1893–1896. [CrossRef]
  • Anconetani, P. and Peretto, C. 1996. La fatturazione intenzionale delle ossa lunghe e della mandibola come indice di attività umana nel sito di Isernia La Pineta. In: C. Peretto (ed.), I reperti paleontologici del giacimento paleolitico di Isernia La Pineta. Isernia, 453–530. Istituto regionale per gli studi storici del Molise “V. Cuoco”, Cosmo Iannone.
  • Augustě, J. and Antón, M. 2002. Mammoths, Sabertooths, and Hominids. 65 Million Years of Mammalian Evolution in Europe. 328 pp. Columbia University Press, New York.
  • Arzarello M., Marcolini, F., Pavia, G., Pavia, M., Petronio, C., Petrucci, M., Rook, L., and Sardella, R. 2007. Evidence of earliest human occurrence in Europe: the site of Pirro Nord (Southern Italy). Naturwissenschaften 94: 107–112. [CrossRef]
  • Azzaroli, A. 1983. Quaternary mammals and the “End Villafranchian” dispersal event—A turning point in the history of Eurasia. Palaeogeography, Palaeoclimatology, Palaeoecology 44: 117–139. [CrossRef]
  • Azzaroli, A., De Giuli, C., Ficcarelli, G., and Torre, D. 1988. Late Pliocene to early Mid−Pleistocene mammals in Eurasia: faunal succession and dispersal events. Palaeogeography, Palaeoclimatology, Palaeoecology 66: 77–100. [CrossRef]
  • Barnosky, A.D. 2005. Effects of Quaternary climatic change on speciation in mammals. Journal of Mammalian Evolution 12: 247–256. [CrossRef]
  • Barnosky, A.D. and Kraatz, B.P. 2007. The role of climatic change in the evolution of mammals. Bioscience 57: 523–532. [CrossRef]
  • Barnosky, A.D., Bell, C.J., Emslie, S.D., Goodwin, H.T, Mead, J.I., Repenning, C.A., Scott, E., and Shabel, A.B. 2004. Exceptional record of mid−Pleistocene vertebrates helps differentiate climatic from anthropogenic ecosystem perturbations.Proceedings of the National Academy of Science USA 101: 9227–9302. [CrossRef]
  • Blois, J.L. and Hadly, E.A. 2009. Mammalian response to Cenozoic climatic change. Annual Review of Earth and Planetary Sciences 37: 8.1–8.28.
  • Bookstein, F.L. 1989. “Size and shape”: a comment on semantics. Systematic Zoology 38: 173–180. [CrossRef]
  • Bookstein, F.L. 1996. Combining the tools of geometric morphometrics. In: L.F. Marcus, M. Corti, A. Loy, G.J.P. Naylor, and D.E. Slice (eds.), Advances in Morphometrics. NATO ASI Series A: Life Sciences 284: 131–152.
  • Bryant, N.H. 1996. Explicitness, stability, and universality in the phylogenetic definition and usage of taxon names: a case study of the phylogenetic taxonomy of the Carnivora (Mammalia). Systematic Biology 45: 174–189.
  • Cardillo, M. and Lister, A. 2002. Death in the slow lane. Nature 419: 440–441. [CrossRef]
  • Ciampaglio, C.N., Kemp, M., and McShea, D.W. 2001. Detecting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity. Paleobiology 27: 695–715. [CrossRef]
  • Christiansen, P. and Adolfssen, J.S. 2005. Bite forces, canine strength and skull allometry in carnivores (Mammalia, Carnivora). Journal of Zoology London 266: 133–151. [CrossRef]
  • Coltorti, M., Feraud, G., Marzoli, A., Peretto, C., Ton−That, T., Voinchet, P., Bahain, J.−J., Minelli, A., and Hohenstein, U.T. 2005. New 40 Ar/ 39 Ar, stratigraphic and palaeoclimatic data on the Isernia La Pineta Lower Palaeolithic site, Molise, Italy. Quaternary International 131: 11–22. [CrossRef]
  • Crusafont−Pairó, M. and Truyols−Santonja, J. 1956. A biometric study of evolution of fissiped carnivores. Evolution 10: 314–332. [CrossRef]
  • Crusafont−Pairó, M. and Truyols−Santonja, J. 1957. Estudios masterométricos en la evolución Fisípedos. I. Los módulos angulares á y â. II. Los parámetros lineales P, C, y T. Boletino Instituto Geologico y Minero España 68: 1–140.
  • Crusafont−Pairó, M. and Truyols−Santonja, J. 1958. A quantitative study of stasigenesis in fissiped carnivores. Nature 181: 289–290. [CrossRef]
  • Dalerum, F., Cameron, E.Z., Kunkel, K., and Somers, M.J. 2009. Diversity and depletions in continental carnivore guilds: implications for prioritizing global carnivore conservation. Biology Letters 5: 35–38. [CrossRef]
  • Evans, A.R., Wilson, G.P., Fortelius, M., and Jernvall, J. 2007. High−level similarity of dentitions in carnivorans and rodents. Nature 445: 78–81. [CrossRef]
  • Ewer, R.F. 1973. The Carnivores. 544 pp. Cornell University Press, Ithaca.
  • Foote, M. 1990. Nearest−neighbour analysis of trilobite morphospace. Systematic Zoology 39: 371–382. [CrossRef]
  • Foote, M. 1992. Paleozoic record of morphological diversity in blastozoan echinoderms. Proceedings of the National Academy of Sciences USA 89: 7325–7329. [CrossRef]
  • Foote, M. 1993. Discordance and concordance between morphological and taxonomic diversity. Paleobiology 19: 185–204.
  • Foote, M. 1997. The evolution of morphological diversity. Annual Review of Ecology and Systematics 28: 129–152. [CrossRef]
  • Fortelius, M., Eronen, J., Jernvall, J., Liu, L., Pushkina, D., Rinne, J., Tesakov, A., Vislobokova, I., Zhang, Z., and Zhou, L. 2002. Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years. Evolutionary Ecology Research 4: 1005–1016.
  • Friscia, A.R., Van Valkenburgh, B., and Biknevicius, A.R. 2007. An ecomorphological analysis of extant small carnivorans. Journal of Zoology 272: 82–100. [CrossRef]
  • Hernández Fernández, M. and Peláez−Campomanes, P. 2003. The bioclimatic model: a method of palaeoclimatic qualitative inference based on mammal associations. Global Ecology and Biogeography 12: 507–517. [CrossRef]
  • Hernández Fernández, M. and Peláez−Campomanes, P. 2005. Quantitative palaeoclimatic inference based on terrestrial mammal faunas. Global Ecology and Biogeography 14: 39–56. [CrossRef]
  • Hernández Fernández, M. and Vrba, E. 2005. Rapoport effect and biomic specialization in African mammals: revisiting the climatic variability hypothesis. Journal of Biogeography 32: 903–918. [CrossRef]
  • Holliday, J.A. and Steppan, S.J. 2004. Evolution of hypercarnivory: the effect of specialization on morphological and taxonomic diversity. Paleobiology 30: 108–128. [CrossRef]
  • Janis, C.M. 1984. The significance of fossil ungulate communities as indicators of vegetation structure and climate. In: P.J. Brenchley (ed.), Fossils and Climate, 85–104. John Wiley and Sons, New York.
  • Janis, C.M., Damuth, J., and Theodor, J. 2000. Miocene ungulates and terrestrial primary productivity: where have all the browsers gone? Proceedings of the National Academy of Sciences 97: 7899–7904. [CrossRef]
  • Janis, C.M., Damuth, J., and Theodor, J. 2004. The species richness of Miocene browsers, and implications for habitat type and primary productivity in the North American grassland biome. Palaeogeography, Palaeoclimatology, Palaeoecology 207: 371 398. [CrossRef]
  • Koch, P.L. and Barnosky, A.D. 2006. Late Quaternary extinctions: state of the debate. Annual Review of Ecology, Evolution, and Systematics 37: 215–250. [CrossRef]
  • Kotsakis, T., Petronio, C., Angelone, C., Argenti, P., Barisone, G., Bedetti, C., Capasso Barbato, L., Di Canzio, E., Marcolini, F., and Sardella, R. 2002. Endemisms in Plio−Pelistocene vertebrate faunas of Italian peninsula and their palaeobiogeographical meaning. Abstracts First International Paleontological Congress, 6–10 Jul. 2002, Sydney, Australia, 93–94. Geological Society of Australia, Sydney.
  • Kurtén, B. 1968. Pleistocene Mammals of Europe. 326 pp. Aldine Publishing Company, Chicago.
  • Lister, A.M. 2004. The impact of Quaternary Ice Ages on mammalian evolution. Philosophical Transactions of the Royal Society of London B 359: 221–241. [CrossRef]
  • Mazza, P. and Rustioni, M. 1994. On the phylogeny of the Eurasian bears. Palaeontographica Abteilung A 230: 1–38.
  • Meloro, C., Raia, P., and Barbera, C. 2007. Effect of predation on prey abundance and survival in Plio−Pleistocene mammalian communities. Evolutionary Ecology Research 9: 505–525.
  • Meloro, C., Raia, P., Carotenuto, F., and Barbera, C. 2008a. Diversity and turnover of Plio−Pleistocene large mammal fauna from the Italian Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology 268: 58–64. [CrossRef]
  • Meloro, C., Raia, P., Piras, P., Barbera, C., and O’Higgins, P. 2008b. The shape of the mandibular corpus in large fissiped carnivores: allometry, function and phylogeny. Zoological Journal of the Linnean Society 154: 832–845. [CrossRef]
  • Mendoza, M., Janis, C.M., and Palmqvist, P. 2005. Ecological patterns in the trophic−size structure of large mammal communities: a ‘taxon free’ characterization. Evolutionary Ecology Research 7: 505–530.
  • Nowak, R.M. 1991. Walker‘s Mammals of the World, 5th edition. 1712 pp. Johns Hopkins University Press, Baltimore.
  • O’Regan, H.J., Turner, A., and Wilkinson, D.M. 2002. European Quaternary refugia: a factor in large carnivore extinction? Journal of Quaternary Science 17: 789–795. [CrossRef]
  • Owen−Smith, R.N. 1988. Megaherbivores. The Influence of Very Large Body Size on Ecology. 382 pp. Cambridge University Press, Cambridge.
  • Polly, D.P. and MacLeod, D.N. 2008. Locomotion in fossil Carnivora: An application of eigensurface analysis for morphometric comparison of 3D Surface. Palaeontologia Electronica 11, 10A: 1–13. http://palaeo−electronica.org/2008_2/135/index.html
  • Raia, P. 2004. Morphological correlates of tough food consumption in carnivores. Italian Journal of Zoology 71: 45–50. [CrossRef]
  • Raia, P., Piras, P., and Kotsakis, T. 2005. Turnover pulse or Red Queen? Evidence from the large mammal communities during the Plio−Pleistocene of Italy. Palaeogeography, Palaeoclimatology, Palaeoecology 221: 293–312. [CrossRef]
  • Raia, P., Piras, P., and Kotsakis, T. 2006. Detection of Plio−Quaternary large mammal communities of Italy: integration to biochronology. Quaternary Science Review 25: 846–854. [CrossRef]
  • Raia, P., Carotenuto, F., Meloro, C., Piras, P., Barbera, C., and Kotsakis, T. 2009. More than three million years of community evolution. The temporal and geographical evolution of the Plio−Pleistocene Western Eurasia mammal faunas. Palaeogeography, Palaeoclimatology, Palaeoecology 276: 15–23. [CrossRef]
  • Rodríguez, J., Alberdi, M.T., Azanza, B., and Prado, J.L. 2004. Body size structure in north−western Mediterranean Plio−Pleistocene mammalian faunas. Global Ecology and Biogeography 13: 163–176. [CrossRef]
  • Rohlf, F.J. 2006a. tpsDig 2.10. Department of Ecology and Evolution, State University of New York, Stony Brook, New York.
  • Rohlf, F.J. 2006b. tpsRelw v. 1.44. Department of Ecology and Evolution, State University of New, York, Stony Brook, New York.
  • Rohlf, F.J. and Slice, D.E. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology 39: 40–59. [CrossRef]
  • Rook, L. and Torre, D. 1996. The wolf−event in Western Europe and the beginning of the Late Villafranchian. Neues Jahrbuch für Geologie und Paläontologie Monatshefte 1996 (8): 495–501.
  • Turner, A. 1995. The Villafranchian large carnivore guild: geographic distribution and structural evolution. Il Quaternario 8: 349–356.
  • Turner, A. and Antón, M. 1997. The Big Cats and Their Fossil Relatives. 256 pp. Columbia University Press, New York.
  • Van Valkenburgh, B. 1985. Locomotor diversity between past and present guilds of large predatory mammals. Paleobiology 11: 406–428.
  • Van Valkenburgh, B. 1988. Trophic diversity in past and present guilds of large predatory mammals. Paleobiology 14: 155–173.
  • Van Valkenburgh, B. 1989. Carnivore dental adaptations and diet: a study of trophic diversity within guilds. In: J.L. Gittleman (ed.), Carnivore Behavior, Ecology, and Evolution. Vol 1, 410–436. Ithaca, Cornell University Press.
  • Van Valkenburgh, B. 1991. Iterative evolution of hypercarnivory in canids (Mammalia: Carnivora): evolutionary interactions among sympatric predators. Paleobiology 17: 340–362.
  • Van Valkenburgh, B. 1995. Tracking ecology over geological time: evolution with guilds of vertebrates. Trends in Ecology and Evolution 10: 71–76. [CrossRef]
  • Van Valkenburgh, B. 1999. Major patterns in the history of carnivorous mammals. Annual Review of Earth and Planetary Science 27: 463–493. [CrossRef]
  • Van Valkenburgh, B. 2007. Déjà vu: the evolution of feeding morphologies in the Carnivora. Integrative and Comparative Biology 47: 147–163. [CrossRef]
  • Wang, X. and Tedford, R.H. 2008. Dogs: Their Fossil Relatives and Evolutionary History. 219 pp. Columbia University Press, New York.
  • Werdelin, L. 1996. Carnivoran ecomorphology: a phylogenetic perspective. In: J.L. Gittleman (ed.), Carnivore Behavior, Ecology, and Evolution. Vol 2, 582–624. Ithaca, Cornell University Press.
  • Wesley−Hunt, G.D. 2005. The morphological diversification of carnivores in North America. Paleobiology 31: 35–55. [CrossRef]
  • Wills, M.A., Briggs, D.E.G., and Fortey, R.A. 1994. Disparity as an evolutionary index: a comparison of Cambrian and recent arthropods. Paleobiology 20: 93–130.
  • Wroe, S., McHenry, C., and Thomason, J. 2005. Bite club: comparative bite force in big biting mammals and the prediction of predatory behaviour in fossil taxa. Proceeding of the Royal Society B 272: 1–7. [CrossRef]
  • Zachos J., Pagani M., Sloan L., Thomas E., and Billups, K. 2001. Trends, rhythms and aberrations in Global climate 65 Ma to present. Science 292: 686–693. [CrossRef]
  • Zelditch, M.L., Sheets H.D., and Fink, W.L. 2003. The ontogenetic dynamics of shape disparity. Paleobiology 29: 139–156. [CrossRef]
  • Zelditch, M.L., Swiderski D.L., Sheets H.D., and Fink, W.L. 2004. Geometric Morphometrics for Biologists. A Primer. 443 pp. Elsevier Academic Press, London.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-2634a959-1d13-4bfd-9c94-e51e2f4c9323
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.