PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 16 | 1 |

Tytuł artykułu

The prediction of novel multiple lipid-binding regions in protein translocation motor proteins: A possible general feature

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Protein translocation is an important cellular process. SecA is an essential protein component in the Sec system, as it contains the molecular motor that facilitates protein translocation. In this study, a bioinformatics approach was applied in the search for possible lipid-binding helix regions in protein translocation motor proteins. Novel lipid-binding regions in Escherichia coli SecA were identified. Remarkably, multiple lipid-binding sites were also identified in other motor proteins such as BiP, which is involved in ER protein translocation. The prokaryotic signal recognition particle receptor FtsY, though not a motor protein, is in many ways related to SecA, and was therefore included in this study. The results demonstrate a possible general feature for motor proteins involved in protein translocation.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

16

Numer

1

Opis fizyczny

p.40-45,fig.,ref.

Twórcy

autor
  • Section Chemistry, Charlemagne College, Wilhelminastraat 13-15, Nijmegen 3913 NH, The Netherlands

Bibliografia

  • 1. Arkowitz, R.A. and Bassilana, M. Protein translocation in Escherichia coli. Biochim. Biophys. Acta 1197 (1994) 311-343.
  • 2. Driessen, A.J.M. and Nouwen, N. Protein translocation across the bacterial cytoplasmic membrane. Annu. Rev. Biochem. 77 (2008) 643-667.
  • 3. de Kruijff, B., Breukink, E., Demel, R.A., van ’t Hoff, R., de Jong, H.H.J., Jordi, W., Keller, R.C.A., Killian, J.A., de Kroon, A.I.M.P., Kusters, R. and Pilon, M. Lipid involvement in protein translocation. In: Membrane Biogenesis and Protein Targeting, New Comprehensive Biochemistry, Vol. 22, (Neupert, W. & Lill, R. Eds.), Elsevier, Amsterdam, 1992, 85-100.
  • 4. van Klompenburg, W. and de Kruijff, B. The role of anionic phospholipids in protein insertion and translocation in bacterial membranes. J. Membr. Biol. 162 (1998) 1-7.
  • 5. de Vrije, T., de Swart, R.I., Dowhan, W. and de Kruijff, B. Phosphatidylglycerol is involved in protein translocation across Escherichia coli inner membranes. Nature 334 (1988) 173-175.
  • 6. Rietveld, A.G., Koorengevel, M.C. and de Kruijff, B. Non-bilayer lipids are required for efficient protein transport across the plasma membrane of Escherichia coli. EMBO J. 14 (1995) 5506-5513.
  • 7. Flower, A.M. The SecY translocation complex: convergence of genetics and structure. Trends Microbiol. 15 (2007) 203-210.
  • 8. Ulbrandt, N.D., London, E.L. and Oliver, D.B. Deep penetration of a portion of Escherichia coli SecA protein into model membranes is promoted by anionic phospholipids and by partial unfolding. J. Biol. Chem. 267 (1992) 15184-15192.
  • 9. Breukink, E., Demel, R.A., de Korte-Kool, G. and de Kruijff, B. SecA insertion into phospholipids is stimulated by negatively charged lipids and inhibited by ATP: A monolayer study. Biochemistry 31 (1992) 1119-1124.
  • 10. Schmidt, M.G., Rollo, E.E., Grodberg, J. and Oliver, D.B. Nucleotide sequence of the secA gene and secA(Ts) mutants preventing protein export in Escherichia coli. J. Bacteriol. 170 (1988) 3404-3414.
  • 11. Breukink, E., Keller, R.C.A. and de Kruijff, B. Nucleotide and negatively charged lipid-dependent vesicle aggregation caused by SecA. FEBS Lett. 331 (1993) 19-24.
  • 12. Breukink, E., Nouwen, N., van Raalte, A., Mizushima, S., Tommassen, J. and de Kruijff, B. The C terminus of SecA is involved in both lipid binding and SecB binding. J. Biol. Chem. 270 (1995) 7902-7907.
  • 13. Economou, A. and Wickner, W. SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78 (1994) 835-843.
  • 14. Keller, R.C.A., Snel, M.M.E., de Kruijff, B. and Marsh, D. SecA restricts in a nucleotide-dependent manner acyl chain mobility up to the center of a phospholipid bilayer. FEBS Lett. 358 (1995) 251-254.
  • 15. Kim, Y.J., Rajapandi, T. and Oliver, D. SecA protein is exposed to the periplasmic surface of the E. Coli inner membrane in its active state. Cell 78 (1994) 845-853.
  • 16. Ahn, T. and Kim, H. SecA of Escherichia coli traverses lipid bilayer of phospholipid vesicles. Biochem. Biophys. Res. Commun. 203 (1994) 326-330.
  • 17. Benach, J., Chou, Y.-T., Fak, J.J., Itkin, A. Nicolae, D.D., Smith, P.C., Wittrock, G., Floyd, D.L., Golsaz, C.M., Gierasch, L.M. and Hunt J.F. Phospholipid-induced monomerization and signal-peptide-induced oligomerization of SecA. J. Biol. Chem. 278 (2003) 3628-3638.
  • 18. Shin, J.-Y, Kim, M. and Ahn, T. Effect of signal peptide and adenylate on the oligomerization and membrane binding of soluble SecA. J. Biochem. Mol. Biol. 3 (2006) 319-328.
  • 19. Gold, V.A.M., Robson, A., Clarke, A.R. and Collinson, I. Allosteric regulation of SecA. J. Biol. Chem. 282 (2007) 17424-17432.
  • 20. Gautier, R., Douguet, D., Anthonny, B. and Drin, G. Heliquest: a webserver to screen sequences with specific α–helical properties. Bioinformatics 24 (2008) 2101-2102.
  • 21. Geourjon, C. and Deleage, G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput. Appl. Biosci. 11 (1995) 681-684.
  • 22. Cooper, D.B., Smith, V.F., Crane, J.M., Roth, H.C., Lilly, A.A. and Randall, L.L. SecA, the motor of the secretion machine, binds diverse partners on one interactive surface. J. Mol. Biol. 382 (2008) 74-87.
  • 23. Hu, H.-J., Holley, J., He, J., Harrison, R.W., Yang, H., Tai, P.C. and Pan, Y. To be or not to be: Predicting soluble SecAs as membrane proteins. IEEE Trans. NanoBioscience 6 (2007) 168-179.
  • 24. Keller, R.C.A. Interactions between lipids and protein components of the prokaryotic secretion pathway. PhD thesis, University of Utrecht, The Netherlands, 1995.
  • 25. Chen, X., Brown, T. and Tai, P.C. Identification and characterization of protease-resistant SecA fragments: secA has two membrane-integral forms. J. Bacteriol. 180 (1998) 527-537.
  • 26. Keller, R.C.A., Killian, J.A. and de Kruijff, B. Anionic phospholipids are essential for α-helix formation of the signal peptide of prePhoE upon interaction with phospholipid vesicles. Biochemistry 31 (1992) 1672-1677.
  • 27. Jordi, W., de Kruijff, B. and Marsh, D. Specificity of the interaction of amino- and carboxy-terminal fragments of the mitochondrial precursor protein apocytochrome c with negatively charged phospholipids. A spinlabel electron spin resonance study. Biochemistry 28 (1989) 8998-9005.
  • 28. Treutlein, H.R., Lemmon, M.A., Engelman, D.M. and Brunger, A.T. The glycophorin A transmembrane domain dimer: sequence-specific propensity for a right-handed supercoil of helices. Biochemistry 31 (1992) 12726- 12732.
  • 29. Drin, G., Casella, J-F., Gautier, R., Boehmer, T., Schwartz, T.U. and Antonny, B. A general amphipathic α–helical motif for sensing membrane curvature. Nat. Struct. Mol. Biol. 14 (2007) 138-146.
  • 30. Krogh, A, Larsson, B, von Heijne, G, Sonnhammer, E.L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305 (2001) 567-80.
  • 31. Tomkiewicz, D., Nouwen, N. and Driessen, A.J.M. Pushing, pulling and trapping – Modes of protein supported protein translocation. FEBS Lett. 581 (2007) 2820-2828.
  • 32. Dowhan, W. Molecular basis for membrane phospholipid diversity: Why are there so many phospholipids. Annu. Rev. Biochem. 66 (1997) 199-232.
  • 33. Hovius, H., Lambrechts, H., Nicolay, K. and de Kruijff, B. Improved methods to isolate and subfractionate rat liver mitochondria. Lipid composition of the inner and outer membrane. Biochim. Biophys. Acta 1021 (1990) 217-226.
  • 34. Ardail, D., Privat, J.-P., Egret-Charlier, M., Levrat, C., Lerme, F. and Louisot, P. Mitochondrial contact sites. J. Biol. Chem. 265 (1990) 18797- 18802.
  • 35. Chapman, D.J., De-Felice, J. and Barber, J. D. Growth temperature effects on thylakoid membrane lipid and protein content of pea chloroplasts. Plant Physiol. 72 (1983) 225-228.
  • 36. Sun, C., Rusch, S.L., Kim, J. and Kendall, D.A. Chloroplast SecA and Escherichia coli SecA have distinct lipid and signal peptide preferences. J. Bacteriol. 189 (2007) 1171-1175.
  • 37. Yeung, T., Gilbert, G.E., Shi, J., Silvius, J. Kapus, A. and Grinstein, S. Membrane phosphatidylserine regulates surface charge and protein localization. Science 11 (2008) 210-213.
  • 38. Eichler, J. Brunner, J. and Wickner, W. The protease-protected 30 kDa domain of SecA is largely inaccessible to the membrane lipid phase. EMBO J. 16 (1997) 2188-2196.
  • 39. van Voorst, F., van der Does, C., Brunner, J., Driessen, A. J. M. and de Kruijff, B. Translocase-bound SecA is largely shielded from the phospholipid acyl chains. Biochemistry 37 (1998) 12261-12268.
  • 40. Fernández-Murray, J.P. and McMaster, C.R. Identification of novel phospholipid binding proteins in Saccharomyces cerevisiae. FEBS Lett. 580 (2006) 82-86.
  • 41. Lill, R., Dowhan, W. and Wickner W. The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell 26 (1990) 271-280.
  • 42. de Leeuw, E., te Kaat, K., Moser, C., Menestrina, G., Demel, R. and de Kruijff, B. Anionic phospholipids are involved in membrane association of FtsY and stimulate its GTPase activity. EMBO J. 19 (2000) 531-541.
  • 43. Cabelli, R.J., Dolan, K.M., Qian, L. and Oliver, D.B. Characterization of membrane-associated and soluble states of SecA from wild-type and SecA51 (TS) mutant strains of Escherichia. J. Biol. Chem. 266 (1991) 24420-24427.
  • 44. Luirink, J., ten Hagen-Jongman, C.M., van der Weijden, C.C., Oudega, B., High, S., Dobberstein, B. and Kusters, R. An alternative protein targeting pathway in Escherichia coli: studies on the role of FtsY. EMBO J. 13 (1994) 2289-2296.
  • 45. Weiche, B., Bürk, J., Angelini, S., Schiltz, E., Thumfart, J-O and Koch, H-G. A cleavable N-terminal membrane anchor is involved in membrane binding of the Escherichia coli SRP receptor. J. Mol. Biol. 28 (2008) 761-773.
  • 46. Braig, D., Bär, C., Thumfart, J-O. and Koch, H-G. Two cooperating helices constitute the lipid-binding domain of the bacterial SRP receptor. J. Mol. Biol. 390 (2009) 401-413.
  • 47. Parlitz, R., Eitan, A., Stjepanovic, G., Bahari, L., Bange, G., Bibi, E. and Sinning, I. Escherichia coli signal recognition particle receptor FtsY contains an essential and autonomous membrane-binding amphipathic helix. J. Biol. Chem. 44 (2007) 32176-32321.
  • 48. Millman, J.S., Qi, H-Y., Vulcu, F., Bernstein, H.D. and Andrews, D.W. FtsY binds to the Escherichia coli inner membrane via interactions with phosphatidylethanolamine and membrane proteins. J. Biol. Chem. 276 (2001) 25982-25989.
  • 49. Halskau, Ø., Muga, A. and Martínez, A. Linking new paradigms in protein chemistry to reversible membrane-protein interactions. Curr. Prot. Pept. Sci. 10 (2009) 339-359.

Uwagi

PL
Rekord w opracowaniu.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-1433ec2e-33e5-4d31-86ba-2f7397253fa9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.