PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 56 | 1 |

Tytuł artykułu

Diversity and evolution of Hunter-Schreger Band configuration in tooth enamel of perissodactyl mammals

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Four different Hunter−Schreger Band (HSB) configurations were observed in the teeth of fossil and extant Perissodactyla. This variability exceeds that observed in Artiodactyla or Proboscidea. The four HSB configurations represent two different evolutionary pathways. Transverse HSB found in many mammalian taxa outside the Perissodactyla represents the most primitive HSB configuration. It occurs in several primitive perissodactyl families and is retained in Palaeotheriidae and extant Equidae. Curved HSB evolved from transverse HSB and occurs in Tapiridae, Helaletidae, and Lophiodontidae, as well as in Ancylopoda and Titanotheriomorpha. This likely indicates independent evolution of curved HSB in two or more lineages, but the number of instances of parallelism of this configuration is obscured by uncertainty in the relationships among these taxa and by a lack of data for some important basal taxa. A second evolutionary pathway leads from transverse HSB via compound HSB to vertical HSB. Compound HSB were detected in Hyrachyidae, Deperetellidae, and the early rhinocerotid Uintaceras. Vertical HSB configuration characterizes the molar dentition of other Rhinocerotidae, Hyracodontidae, Indricotheriidae, and Amynodontidae. Often, the incisors of rhinocerotids retain traces of compound HSB. Thus the HSB configuration reflects phylogenetic relationships to some degree. The selective value of the modified HSB configurations is interpreted functionally as a mechanism to reduce abrasion during mastication, assuming that the perpendicular intersection of prisms with the actual grinding surfaces resists wear better than prisms running parallel to the occlusal surface.

Wydawca

-

Rocznik

Tom

56

Numer

1

Opis fizyczny

p.11-32,fig.,ref.

Twórcy

  • Steinmann Institut (Paleontology), University of Bonn, Nuss-allee 8, D-53115 Bonn, Germany
autor

Bibliografia

  • Boyde, A. 1965. The structure of developing mammalian dental enamel. In: M. Stark and R. Fearnhead (eds.), Tooth Enamel, 163–194. Wright, Bristol.
  • Boyde, A. 1984. Dependence of rate of physical erosion on orientation and density in mineralised tissues. Anatomy and Embryology 170: 57–62. [CrossRef]
  • Boyde, A. and Fortelius, M. 1986. Development, structure and function of rhinoceros enamel. Zoological Journal of the Linnean Society 87: 181–214. [CrossRef]
  • Boyde, A. and Martin, L. 1984. The microstructure of primate dental enamel. In: D. Chivers, B. Wood, and A. Bilsborough (eds.), Food Acquisition and Processing in Primates, 341–367. Plenum Publishing, New York.
  • Bruijn, H. de and Koenigswald, W. von 1994. Early Miocene rodent faunas from the eastern Mediterranean area. Part V. The genus Enginia (Muroidea) with a discussion of the structure of the incisor enamel. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 97: 381–405.
  • Colbert, M. 2005. The facial skeleton of the early Oligocene-Colodon (Perissodactyla, Tapiroidea). Palaeontologia Electronica 8 (12A): 1–27.
  • Colbert, M. and Schoch, R. 1998. Tapiroidea and other moropomorphs. In: C. Janis, K. Scott, and L. Jacobs (eds.), Evolution of Tertiary Mammals of North America, Vol. 1: Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals, 569–582. Cambridge University Press, Cambridge.
  • Dashzeveg, D. and Hooker, J. 1997. New ceratomorph perissodactyls (Mammalia) from the middle and late Eocene of Mongolia: their implications for phylogeny and dating. Zoological Journal of the Linnean Society 120: 105–138. [CrossRef]
  • Ferretti, M. 2008. Enamel structure of Cuvieronius hyodon (Proboscidea, Gomphotheriidae) with discussion on enamel evolution in elephantoids. Journal of Mammalian Evolution 15: 37–58. [CrossRef]
  • Fortelius, M. 1984. Vertical decussation of enamel, prisms in lophodont ungulates. In: R. Fearnhead and S. Suga (eds.), Tooth Enamel IV, 427–431. Elsevier, Amsterdam.
  • Fortelius, M. 1985. Ungulate cheek teeth: developmental, functional and evolutionary interrelations. Acta Zoologica Fennica 180: 1–76.
  • Froehlich, D. 1999. Phylogenetic systematics of basal perissodactyls. Journal of Vertebrate Paleontology 19: 140–159.
  • Holbrook, L. 1999. The phylogeny and classification of tapiromorph perissodactyls (Mammalia). Cladistics 15: 331–351. [CrossRef]
  • Holbrook, L. 2001. Comparative osteology of early Tertiary tapiromorphs (Mammalia, Perissodactyla). Zoological Journal of the Linnean Society 132: 1–54. [CrossRef]
  • Holbrook, L. 2007. Rhinocerotoid affinities of Deperetellidae (Mammalia, Perissodactyla) based on enamel microstructure. Journal of Vertebrate Paleontology 27: 90A.
  • Holbrook, L. 2009. Osteology of Lophiodon Cuvier, 1822 (Mammalia, Perissodactyla) and its phylogenetic implications. Journal of Vertebrate Paleontology 29: 212–230. [CrossRef]
  • Holbrook, L. and Lucas, S. 1997. A new genus of rhinocerotoid from the Eocene of Utah and the status of North American “Forstercooperia”. Journal of Vertebrate Paleontology 17: 384–396.
  • Hooker, J. 1984. A primitive ceratomorph (Perissodactyla, Mammalia) from the early Tertiary of Europe. Zoological Journal of the Linnean Society 82: 229–244. [CrossRef]
  • Hooker, J. 1989. Character polarities in early perissodactyls and their significance for Hyracotherium and infraordinal relationships. In: D. Prothero and R. Schoch (eds.), The Evolution of Perissodactyls, 79–101. Oxford University Press, New York.
  • Hooker, J. 1994. The beginning of the equoid radiation. Zoological Journal of the Linnean Society 112: 29–63. [CrossRef]
  • Hooker, J. 2005. Perisssodactyla. In: K. Rose and J. Archibald (eds.), The Rise of Placental Mammals, 199–214. Johns Hopkins University Press, Baltimore.
  • Hooker, J. and Dashzeveg, D. 2003. Evidence for direct mammalian faunal interchange between Europe and Asia near the Paleocene–Eocene boundary. Geological Society of America Special Paper 369: 479–500.
  • Hooker, J.J. and Dashzeveg, D. 2004. The origin of chalicotheres (Perissodactyla, Mammalia). Palaeontology 47 (6): 1363–1386. [CrossRef]
  • Hunter, J. 1778. The Natural History of Human Teeth: Explaining their Structure, Use, Formation, Growth, and Diseases. Second edition. 128 pp. Johnson, London.
  • Kalthoff, D. 2000. Die Schmelzmikrostruktur in den Incisven der hamsterartigen Nagetiere und anderer Myomorpha (Rodentia, Mammalia). Palaeontographica Abteilung A 259: 1–193.
  • Kawai, N. 1955. Comparative anatomy of bands of Schreger. Okajimas Folia Anatomica Japonica 27: 115–131.
  • Koenigswald, W. von 1980. Schmelzstruktur und Morphologie in den Molaren der Arvicolidae (Rodentia). Abhandlungen Senckenbergische Naturforschende Gesellschaft 539: 1–129.
  • Koenigswald, W. von 1993. Die Schmelzmuster in den Schneidezähnen der Gliroidea (Gliridae und Seleviniidae, Rodentia, Mammalia) und ihre systematische Bedeutung. Zeitschrift für Säugetierkunde 58: 92–115.
  • Koenigswald, W. von 1994. U−shaped orientation of Hunter−Schreger Bands in the enamel of Moropus (Mammalia: Chalicotheriidae) in comparison to some other Perissodactyla. Annals of Carnegie Museum 63: 49–65.
  • Koenigswald, W. von 1997a. Brief survey of the enamel diversity at the schmelzmuster level in Cenozoic placental mammals. In: W. von Koenigswald and P. Sander (eds.), Tooth Enamel Microstructure, 137–161. Balkema, Rotterdam.
  • Koenigswald, W. von 1997b. Evolutionary trends in the differentiation of the mammalian enamel ultrastructure. In: W. von Koenigswald and P. Sander (eds.), Tooth Enamel Microstructure, 203–235. Balkema, Rotterdam.
  • Koenigswald, W. von 2000. Two different strategies in enamel differentiation: Marsupialia versus Placentalia. In: M. Teaford, M. Smith, and M. Ferguson, (eds.), Development, Function, and Evolution of Teeth, 107–118. Cambridge University Press, New York.
  • Koenigswald, W. von 2002. Besonderheiten der Schmelzoberfläche bei Säugetieren. Lynx N.S. 32 (2001): 171–181.
  • Koenigswald, W. von 2004. The three elementary types of schmelzmuster in rodent molars and their occurrence in the various rodent clades. Palaeontographica Abteilung A 270: 95–132.
  • Koenigswald, W. von and Clemens, W. 1992. Levels of complexity in the microstructure of mammalian enamel and their application in studies of systematics. Scanning Microscopy 6: 195–218.
  • Koenigswald, W. von and Pfretzschner, H. 1987. Hunter−Schreger−Bänder im Zahnschmelz von Säugetieren (Mammalia): Anordnung und Prismenverlauf. Zoomorphology 106: 329–338. [CrossRef]
  • Koenigswald, W. von and Pfretzschner, H. 1991. Biomechanics in the enamel of mammalian teeth. In: N. Schmidt−Kittler and K. Vogel (eds.), Constructional Morphology and Biomechanics, 113–125. Springer, Berlin.
  • Koenigswald, W. von and Rose, K. 2005. The enamel microstructure of the early Eocene pantodont Coryphodon and the nature of the zigzagenamel. Journal of Mammalian Evolution 12: 419–432. [CrossRef]
  • Koenigswald, W. von and Sander, P. (eds.) 1997a. Tooth Enamel Microstructure. 280pp. Balkema, Rotterdam.
  • Koenigswald, W. von and Sander, P. 1997b. Glossary. In: W. von Koenigswald and P. Sander (eds.), Tooth Enamel Microstructure, 267–280. Balkema, Rotterdam.
  • Koenigswald, W. von, Martin, T., and Pfretzschner, H. 1993. Phylogenetic interpretation of enamel structures in mammalian teeth: possibilities and problems. In: F. Szalay, M. Novacek, and M. McKenna (eds.), Mammal Phylogeny, 303–314. Springer, New York.
  • Koenigswald, W. von, Rensberger, J., and Pfretzschner, H. 1987. Changes in the tooth enamel of early Paleocene mammals allowing increased diet diversity. Nature 328: 150–152. [CrossRef]
  • Korvenkontio, V.A. 1934. Mikroskopische Untersuchungen an Nagerincisiven unter Hinweis auf die Schmelzstruktur der Backenzähne. Histologisch−phyletische Studie. Annales Zoologici Societatis Zoologicae−Botanicae Fennicae – Vanamo 2: 1–274, Helsinki.
  • Lindenau, C. 2005. Zahnschmelzmikrostrukturen südamerikanischer Huftiere. 193 pp. Ph.D. thesis University Bonn, Bonn. http://hss.ulb.unibonn. de/2005/0557/0557.htm
  • Line, S. and Bergqvist, L. 2005. Enamel structure of Paleocene mmammals of the Săo José de Itaboraí Basin, Brazil. Journal of Vertebrate Paleontology 25: 924–928. [CrossRef]
  • Lucas, S. and Holbrook, L. 2004. The skull of the Eocene perissodactyl Lambdotherium and its phylogenetic significance. New Mexico Museum of Natural History and Science Bulletin 26: 81–87.
  • Maas, M. and Thewissen, J. 1995. Enamel microstructure of Pakicetus (Mammalia: Archaeoceti). Journal of Paleontology 96: 1154–1163.
  • Mader, B. 1989. The Brontotheriidae: a systematic revision and preliminary phylogeny of North American genera. In: D. Prothero and R. Schoch (eds.), The Evolution of Perissodactyls, 458–484. Oxford University Press, New York.
  • McKenna, M.C. and Bell, S.K. 1997. Classification of Mammals Above the Species Level. 631 pp. Columbia University Press, New York.
  • Mihlbachler, M. 2008. Species taxonomy, phylogeny, and biogeography of the Brontotheriidae (Mammalia: Perissodactyla). Bulletin of the American Museum of Natural History 311: 1–475. [CrossRef]
  • Norman, J. and Ashley, M. 2000. Phylogenetics of Perissodactyla and tests of the molecular clock. Journal of Molecular Evolution 50: 11–21.
  • Osborn, C. 1965. The nature of the Hunter−Schreger Bands in enamel. Archive of Oral Biology 10: 929–933. [CrossRef]
  • Pfretzschner, H. 1988. Structural reinforcement and crack propagation in enamel. Mémoirs Muséum national d’Histoire naturelle (sér. C) 53: 133–143.
  • Pfretzschner, H. 1993. Enamel microstructure in the phylogeny of Equidae. Journal of Vertebrate Paleontology 13: 342–349.
  • Pfretzschner, H. 1994. Biomechanik der Schmelzmikrostruktur in den Backenzähnen von Grossäugern. Palaeontographica Abteilung A 234: 1–88.
  • Prothero, D. 2005. The Evolution of North American Rhinoceroses. 218 pp. Cambridge University Press, Cambridge.
  • Prothero, D., Manning, E., and Hanson, C. 1986. The phylogeny of the Rhinocerotoidea (Mammalia, Perissodactyla). Zoological Journal of the Linnean Society 87: 341–366. [CrossRef]
  • Prothero, D., Guerin. C., and Manning, E. 1989. The history of the Rhinocerotoidea. In: D. Prothero and R. Schoch (eds.), The Evolution of Perissodactyls, 321–340. Oxford University Press, New York.
  • Quenstedt, F. 1852. Handbuch der Petrefaktenkunde. 792 pp. Laupp and Siebeck, Tübingen.
  • Radinsky, L. 1963. Origin and early evolution of North American Tapiroidea. Peabody Museum of Natural History, Yale University, Bulletin 17: 1–106.
  • Radinsky, L. 1966. The families of the Rhinocerotoidea (Mammalia, Perissodactyla). Journal of Mammalogy 47: 631–639. [CrossRef]
  • Rensberger, J. and Koenigswald, W. von 1980. Functional and phylogenetic interpretation of enamel microstructure in rhinoceroses. Paleobiology 6: 477–495.
  • Rensberger, J. and Pfretzschner, H. 1992. Enamel structure in astrapotheres and its functional implications. Scanning Microscopy 6: 495–510.
  • Rose, K. 2006. The Beginning of the Age of Mammals. 428 pp. Johns Hopkins University Press, Baltimore.
  • Schoch, R. 1989. A brief historical review of perissodactyl classification. In: D. Prothero and R. Schoch (eds.), The Evolution of Perissodactyls, 13–23. Oxford University Press, New York.
  • Schreger, D. 1800. Beitrag zur Geschichte der Zähne. Beiträge zur Zergliederkunst 1: 1–7.
  • Shobusawa, M. 1952. Vergleichende Untersuchungen über die Form der Schmelzprismen der Säugetiere. Okaijamas Folia Anatomica Japonica 24: 371–392.
  • Stefen, C. 1995. Zahnschmelzdifferenzierungen bei Raubtieren. Carnivora, im Vergleich zu Vertretern der Dreodonta, Arctocyonidae, Mesonychidae, Entelodontidae (Placentalia), Thylacoleodontidae Dasyuridae und Thylacinidae (Marsupialia). 190 pp. Unpublished Ph.D. thesis, Universität Bonn, Bonn.
  • Stefen, C. 1997a. The enamel of Creodonta, Arctocyonidae, and Mesonychidae (Mammalia), with special reference to the appearance of Hunter−Schreger Bands. Paläontologische Zeitschrift 71: 291–303.
  • Stefen, C. 1997b. Differentiations in Hunter−Schreger Bands of carnivores. In: W. von Koenigswald and P. Sander (eds.), Tooth Enamel Microstructure, 123–136. Balkema, Rotterdam.
  • Stefen, C. 1999. Enamel microstructure of recent and fossil Canidae (Carnivora: Mammalia). Journal Vertebrate Paleontology 19: 576–587.
  • Tabuce, R., Delmer, C., and Gheerbrant, E. 2007. Evolution of the tooth enamel microstructure in the earliest proboscideans (Mammalia). Zoological Journal of the Linnean Society 149: 611–628. [CrossRef]
  • Wood, H. 1934. Revision of the Hyrachyidae. Bulletin of the American Museum of Natural History 67: 181–295.
  • Wood, C., and Stern, D. 1997. The earliest prisms in mammalian and reptilian enamel. In: W. von Koenigswald and P. Sander (eds.), Tooth Enamel Microstructure, 63–83. Balkema, Rotterdam.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-049f0508-01f5-40af-a14d-89a947968e06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.