PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 2 |

Tytuł artykułu

Polishing of secondary effluent by a two-stage vertical-flow constructed wetland

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A two-stage vertical-flow constructed wetland (VFCW) was built to advanced treatment of secondary effluent containing organic and inorganic nutrients (nitrogen and phosphorus) from a municipal sewage treatment plant in Beijing, China. The results showed that the VFCW effluent achieved 66-83% and 81-90% removal for COD and TP, respectively. Meanwhile, NH₄⁺-N and TN were almost completely removed during stable operation of the wetland system. The VFCW effluent concentrations of COD, TN, and TP were less than 30 mg·L⁻¹, 1.5 mg·L⁻¹, and 0.3 mg·L⁻¹, respectively, which can meet the environmental quality standards for surface water in China. Because of the special design, the better performance of the VFCW was that it allowed the treatment of wastewater under multiple aerobic, anoxic, and anaerobic conditions sequentially in different heights of the CW unit. New media materials, rice husks, and steel slag were the key to the efficient removal of TN and TP. This technology could be adopted to improve the secondary effluent quality.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Numer

2

Opis fizyczny

p.923-928,fig.,ref.

Twórcy

autor
  • School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, P.R. China
autor
  • School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, P.R. China
autor
  • School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, P.R. China
autor
  • School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, P.R. China

Bibliografia

  • 1. Beijing Municipal Environmental Protection Bureau. Beijing Environmental Statement, Beijing, 2011.
  • 2. RUPPERT G., BAUER R., HEISLER G. UV-O₃, UV-H₂O₂, UV-TiO₂ and the photo-Fenton reaction: Comparison of advanced oxidation processor for wstewater treatment. Chemosphere. 28, 1447, 1994.
  • 3. WU S.Q., YUE Q.Y., QI Y.F., GAO B.Y., HAN S.X., YUE M. Preparation of ultra-lightweight sludge ceramics (ULSC) and application for pharmaceutical advanced wastewater treatment in a biological aerobic filter (BAF). Bioresource Technol. 102, 2296, 2011.
  • 4. ALATON I.A., BALCIOGLU I.A., BAHNEMANN D.W. Advanced oxidation of a reactive dyebath effluent: comparison of O₃, H₂O₂/UV-C and TiO₂/UV-A processes. Water Res. 36, 1143, 2002.
  • 5. LUCAS M.S., PERES J.A., PUMA G.L. Treatment of winery wastewater by ozone-based advanced oxidation processes (O₃, O₃/UV and O₃/UV/H₂O₂) in a pilot-scale bubble column reactor and process economics. Sep. Purif. Technol, 72, 235, 2010.
  • 6. GOTTSCHALL N., BOUTIN C., CROLLA A., KINSLEY C., CHAMPAGNE P. The role of plants in the removal of nutrients at a constructed wetland treating agricultural (dairy) wastewater, Ontario, Canada. Ecol. Eng. 29, 154, 2007.
  • 7. VYMAZAL J. The use constructed wetlands with horizontal sub-surface flow for various types of wastewater. Ecol. Eng. 35, 1, 2009.
  • 8. ZHANG H.G., CUI B.S., HONG J.M., ZHANG K.J. Synergism of natural and constructed wetlands in Beijing, China. Ecol Eng. 37, 128, 2011.
  • 9. NERALLA S., WEAVER R.W., LESIKAR B.J., PERSYN R.A. Improvement of domestic wastewater quality by subsurface flow constructed wetlands. Bioresour. Technol. 75, 19, 2000.
  • 10. AKRATOS C.S., TSIHRINTZIS V.A. Effect of temperature, HRT, Vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Water Res. 29, 173, 2008.
  • 11. MATAMOROS V., GARCÍA J., BAYONA J.M. Organic micropollutant removal in a full-scale surface flow constructed wetland fed with secondary effluent. Water Res. 42, 653, 2008.
  • 12. VYMAZAL J., KRÖPFELOVÁ L. Removal of organics in constructed wetlands with horizontal sub-surface flow: A review of the field experience. Sci. Total Environ. 407, 3911, 2009.
  • 13. HUANG X.F., LING J., XU J.C., FENG Y., LI G.M. Advanced treatment of wastewater from an iron and steel enterprise by a constructed wetland/ultrafiltration/reverse osmosis process. Desalination. 269, 41, 2011.
  • 14. TEE H.C., LIM P.E., SENG C.E., NAWI M.A.W. Newly developed baffled subsurface-flow constructed wetland for the enhancement of nitrogen removal. Bioresource Technology. 104, 235, 2010.
  • 15. DRIZO A., FORGET C., CHAPUIS R.P., COMEAU, Y. Phosphorus removal by electric arc furnace steel slag and serpentinite. Water Res. 40, 1547, 2006.
  • 16. XI D.L., SUN Y.S., LIU X.Y. Environmental monitoring, Beijing: Higher Education Press, China, pp. 1-116, 2004.
  • 17. GB 3838-2002, China, Environmental quality standards for surface water, 2002.
  • 18. LEE C.G., FLETCHER T.D., SUN G.Z. Nitrogen removal in constructed wetland systems. Eng. Life Sci. 9, 11, 2009.
  • 19. PAUL E.A., CLARK F.E. Soil microbiology and biochemistry. 2nd ed. San Diego, California: Academic Press, 1-52, 1996.
  • 20. SCHMIDT I., SLIEKERS O., SCHMID M., BOCK E., FUERST J., KUENEN J.G., JETTEN M. S. M., STROUS M., New concepts of microbial treatment process for the nitrogen removal from wastewaters. FEMS Microbiol. Rev. 27, 481, 2003.
  • 21. HAUCK R.D. Atmospheric nitrogen chemistry, nitrification, denitrification, and their relationships. In: Hutzinger O, editor. The handbook of environmental chemistry. Vol. 1. Part C, the natural environment and biogeochemical cycles. Berlin: Springer-Verlag; 105, pp. 1-85, 1984.
  • 22. ZHANG C.H., NING KE., ZHANG W.W., GUO Y.J., CHEN J., LIANG C. Determination and removal of antibiotics in secondary effluent using a horizontal subsurface flow constructed wetland, Environ. Sci.: Processes Impacts, 15, 709, 2013.
  • 23. WU S.B., WIESSNER A., DONG R.J., PANG C.L., KUSCHK P. Performance of two laboratory-scale horizontal wetlands under varying influent loads treating artificial sewage. Eng. Life Sci. 12, 178, 2012.
  • 24. HU Y.S., KUMAR J.L.G., AKINTUNDE A.O., ZHAO X.H., ZHAO Y.Q. Effects of livestock wastewater variety and disinfectants on the performance of constructed wetlands in organic matters and nitrogen removal. Environ. Sci. Pollut. R. 18, 1414, 2011.
  • 25. BIALOWIEC A., JANCZUKOWICZ W., RANDERSON P.F. Nitrogen removal from wastewater in vertical flow constructed wetlands containing LWA/gravel layers and reed vegetation. Ecol. Eng. 37, 897, 2011.
  • 26. ALLENDE K.L., FLETCHER T.D., SUN G. The effect of substrate media on the removal of arsenic, boron and iron from an acidic wastewater in planted column reactors. Chem. Eng. J. 179, 119, 2012.
  • 27. BRUCH I., FRITSCHE J., BÄNNINGER D., ALEWELL U., SENDELOV M., HÜRLIMANN H., HASSELBACH R., ALEWELL C. Improving the treatment efficiency of constructed wetlands with zeolite-containing filter sands. Bioresour. Technol. 102, 937, 2011.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-fdbc9cef-b9f6-4e60-9985-db7f5043cd87
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.