PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 28 | 4 |

Tytuł artykułu

Preliminary investigation to estimate soil NAPL retention using parametric pedotransfer functions

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Organic liquid retention of soils is a primary input variable for modelling the nonaqueous phase liquid transport and behaviour in the subsurface. In environmental and soil physical practice, it is mainly determined by scaling based on the water retention of soils or with charts of average empirical values of organic liquid retention or the fitting parameters of hydraulic functions. Predicting the fitting parameters of organic liquid retention curves with pedotransfer functions might be a promising alternative method, but this topic has only been researched to a limited extent. Thus we investigated the applicability of different hydraulic functions (3- and 4- parameter form of the van Genuchten equation and Brutsaert equation) for fitting organic liquid retention characteristics. Multivariate linear regression was used to build and develop pedotransfer functions, modelling relations between original and transformed values of basic soil properties and organic liquid retention. We attempted to generate parametric pedotransfer functions. According to our results, the applicability of hydraulic functions for fitting nonaqueous phase liquid retention curves to the experimental data was proven. The investigations gave promising results for the possibility to estimate soil nonaqueous phase liquid retention with parametric pedotransfer functions.

Wydawca

-

Rocznik

Tom

28

Numer

4

Opis fizyczny

p.435-445,fig.,ref.

Twórcy

autor
  • Georgikon Faculty, University of Pannonia, 16.Deak, Keszthely H-8360, Hungary
autor
  • Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, 15.Herman, Budapest H-1022, Hungary

Bibliografia

  • Assouline S. and Or, D., 2013. Conceptual and parametric representation of soil hydraulic properties: A review. Vadose Zone J., (12) 1-20, doi:10.2136/vzj2013.07.0121.
  • Beckett G.D. and Joy S., 2003. Light Non-Aqueous Phase Liquid (LNAPL) Parameters Database. Users Guide. American Petroleum Institute, Publ. 4731, Washington, DC, USA. Blake G.R. and Hartge K.H., 1986. Bulk Density. In: Klute, A. (ed.) Methods of soil analysis. Part 1. Agron. Monogr., 9 ASA and SSSA, Madison, WI, USA.
  • Botula Y.-D., Nemes A., Mafuka P., Van Ranst E., and Cornelis W., 2013. Prediction of water retention of soils from the humid tropics by the non-parametric k-nearest neighbor approach. Vadose Zone J. 12 (2), doi: 10.2136/vzj2012.0123.
  • Brutsaert W., 1966. Probably laws for pore size distributions. Soil Sci., 101, 85-92.
  • Carsel R.F. and Parish R.S., 1988. Developing joint probability distribution of soil water retention characteristics. Water Resour. Res., 24, 755-769.
  • Cornelis W.M., Khlosi M., Hartmann R., Van Meirvenne, M., and De Vos B., 2005. Comparison of unimodal analytical expressions for the soil-water retention curve. Soil Sci. Soc. Am. J., 69, 1902-1911.
  • Gee G.W. and Bauder J.W., 1986. Particle-size Analysis. In: Methods of soil analysis (Ed. A. Klute). Part 1. Agron.Monogr. 9. ASA and SSSA, Madison, WI, USA.
  • Guarnachia J., Pinder G. and Fishman M., 1997. NAPL: simulator documentation. National Risk Management Research Laboratory. Ada, OK 74820. EPA/600/R-97/102.
  • Haverkamp R., Leij F.J., Fuentes C., Sciortino A., and Ross P.J., 2005. Soil water retention: I. Introduction of a shape index. Soil Sci. Soc. Am. J., 69, 1881-1890.
  • Hernádi H. and Makó A., 2014. Dataset for creating pedotransfer functions to estimate organic liquid retention of soils. J. Env. Geo., 7 (1-2), 11-22.
  • Lamorski K., Bieganowski A., Ryżak M., Sochan A., Sławiński C., and Stelmach W., 2012. Assesment of the usefulness of particle size distribution measured by laser diffraction for soil water retention modelling. J. Plant Nutr. Soil Sc., 177(5), 803-813.
  • Lenhard R.J. and Parker J.C., 1987. Measurement and prediction of saturation-pressure relations in three phase porous media systems. J. Contam. Hydrol., 1, 407-424.
  • Leverett M.C., 1941. Capillary behavior in porous solids. Trans. of AIME, 142(1), 152-169.
  • Lu S., Tusheng R. and Yuanshi G., 2007. Evaluation of three models that describe soil water retention curves from saturation to oven dryness. Soil Sci. Soc. Am. J., 72, 1542-1546.
  • Makó A., 2005. Measuring the two-phase capillary pressure-saturation curves of soil samples saturated with nonpolar liquids. Commun. Soil Sci. Plan., 36, 439-453.
  • Makó A. and Hernádi H., 2013. Hydrocarbon derivates in soils: Soil physical researches (in Hungarian). Pannon University, Veszprém, Hungary.
  • Minasny B., Hopmans J.W., Harter T., Eching S.O., Tuli A., and Denton M.A., 2004. Neural networks prediction of soil hydraulic functions for alluvial soils using multistep outflow data. Soil Sci. Soc. Am. J., 68, 417-429.
  • Minasny B., McBratney A.B., and Bristow K.L., 1999. Comparison of different approaches to the development of pedotransfer functions for water-retention curves. Geoderma, 93, 225-253.
  • Nelson R.E., 1982. Carbonate and gypsum. In: Methods of soil analysis (Ed. A.L. Page) . Part 2. Agron. Monogr. 9. ASA and SSSA, Madison, WI, USA.
  • Rajkai K., Kabos S. and van Genuchten M.T., 2004. Estimating the water retention curve from soil properties: comparison of linear, nonlinear and concomitant variable methods. Soil Till. Res., 79. 145-152.
  • Rathfelder K. and Abriola L.M., 1996. The influence of capillarity in numerical modelling of organic liquid redistribution in two-phase systems. Adv. Water Res., 21(2), 159-170.
  • Schaap M.G. and Leij F.J., 1998. Database-related accuracy and uncertainty of pedotransfer functions. Soil Sci., 163, 765-779.
  • Tomasella J., Hodnet M.G., and Rossato L., 2000. Pedotransfer functions for the estimation of soil water retention in Brazilian soils. Soil Sci. Soc. Am. J., 64, 327-338.
  • Tuller M., Or D., and Dudley L.M., 1999. Adsorption and capillary condensation in porous media: Liquid retention and interfacial configurations in angular pores. Water Resor. Res., 35(7), 1949-1964.
  • Tyurin I.V., 1931. A new modification of the volumetric method of determining soil 344 organic matter by means of chromic acid. Pochvovedenie, 5-6, 36-47.
  • van Genuchten M.Th., 1980. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892-989.
  • van Genuchten M.Th., Leij F.J. and Jates S.R., 1991. The RETZ code for quantifying the hydraulic functions of unsaturated soils. EPA/600/2-91/065, U.S. Environmental Protection Agency, Ada, OK.
  • van Genuchten M.Th. and Nielsen D.R., 1985. On describing and predicting the hydraulic conductivity of unsaturated soils. Ann. Geophys., 3, 615-627.
  • Vereecken H., Maes J., Feyen J., and Darius, P., 1989.Estimaing the soil moisture retention characteristic from texture, bulk density and carbon content. Soil Sci., 148, 389-403.
  • Weaver J.W., Charbeneau R.J., Taux J.D., Lie B.K., and Provost J.B., 1994. The hydrocarbon spill screening model (HSSM). 1. US EPA. EPA/600/R-94/039a.
  • Wösten J.H.M., Lilly A., Nemes A., and Le Bas C., 1999. Development and use of a database of hydraulic properties of European soils. Geoderma, 90, 169-185.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-fd89cbbd-7cf8-4e93-87b1-947250738b21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.