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S u m m a r y. The paper deals with the problem of recov-
ery of continuous relaxation spectrum of linear viscoelastic 
materials from discrete-time noise corrupted measurements of 
relaxation modulus obtained in stress relaxation test. The least-
squares problem of optimal approximation of the spectrum 
is solved based on the orthogonal series expansion. Hermite 
functions are used. Since the problem of relaxation spectrum 
identifi cation is ill-posed, the inverse problem of Tikhonov 
regularization is used to guarantee the stability of the scheme. 
Guaranteed model approximation (GMA) is adopted for the 
choice of the regularization parameter. The numerical realiza-
tion of the scheme by using the singular value decomposition 
(SVD) is discussed. The resulting identifi cation algorithm is 
described in forthcoming paper. 

K e y  w o r d s : viscoelasticity, relaxation spectrum, identi-
fi cation, regularization, Hermite functions

INTRODUCTION

Many materials are most often modelled in a time-
domain viscoelastic regime, which is good for character-
izing strain-stress dependence, creep and stress relaxation 
within a small deformation [1, 2, 4, 5, 7, 15, 16]. Although 
for viscoelastic materials a multiplicity of constitutive 
theories exists, essentially, only linear viscoelasticity 
is considered for which the Boltzmann superposition 
principle applies. 

The mechanical properties of linear viscoelastic 
materials are characterized by relaxation spectrum [4, 
5, 13, 16]. From the relaxation spectrum other material 
functions such as the relaxation modulus or the creep 
compliance can be calculated without diffi culty and 
next both the constant and time-variable bulk and shear 
modulus or Poisson’s ratio can be determined. Thus, the 
spectrum is vital not only for constitutive models but 
also for the insight into the properties of a viscoelastic 
material [13,19,27].

Relaxation spectrum is not directly accessible by 
experiment and thus must be determined from the ap-
propriate response function, measured either in time or 
frequency domain [4, 13, 15, 27]. There are a few papers, 
e.g., [27] as well as [18-20] and the other previous papers 
by the present author cited therein, that deal with the re-
laxation spectrum determination from time-measurement 
data. However, the computationally effi cient methods to 
determine the spectrum are still desirable and it is the 
purpose of this study.

The practical diffi culty in the relaxation spectrum 
determination is rooted in a theoretical mathematical 
problem diffi culty, because it is an ill-posed inverse prob-
lem [4,19]. The mathematical diffi culties can be overcome 
by synthesis of an appropriate identifi cation algorithm. 
In this paper an optimal scheme of the least-squares 
approximation of relaxation spectrum by the linear com-
bination of Hermite functions is proposed. The assumed 
quality of the model approximation is achieved by the 
respective choice of the regularization parameter by using 
guaranteed model approximation rule.

RELAXATION SPECTRUM

In the rheological literature it is commonly assumed 
that the modulus G(t) has the following relaxation spec-
trum representation [5,16]:

( ) ( )
0

tG t H e dνν ν
∞

−= ∫ , (1)

where: the relaxation spectrum H(v) characterizes the 
distribution of relaxation frequencies v 0 in the range 
[v,v+dv]. We assume that the real relaxation spectrum H(v)
there exists – the respective existence and uniqueness 
conditions are given in [21; Part I: Theorem 1, Part II: 
Theorems 1, 2]. Throughout we shall be concerned with 
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the case when the spectrum H(v) is completely unknown; 
the relaxation modulus G(t) can be, however, measured 
for any time t 0.

The problem of relaxation spectrum determination 
is the numerical problem of reconstructing solution of 
Fredholm integral equation of the fi rst kind (1) from 
time-measured discrete relaxation modulus data. This 
problem is known by Hadamard to be severely ill-posed
[19, 23]. This means that small changes in measurement 
data can lead to arbitrarily large changes in the relaxation 
spectrum. In remedy, some reduction of the admissible 
solutions set or respective regularization of the original 
problem can be used. In this paper we use both the tech-
niques simultaneously. An approximation of the spectrum 
by the fi nite series of Hermite functions is combined with 
Tikhonov regularization. 

The idea of the scheme is based on the Fourier series 
expansion of unknown relaxation spectrum with respect 
to the orthonormal basis in function space. This approach 
is known both in the approximation theory [25] and in 
mathematical modelling and system identifi cation tasks 
[8,9,14]. A wide overview of the signifi cance of the or-
thogonal basis in system identifi cation is available in [14]. 
Orthogonal schemes are also used for signal processing 
[9] and in automatic control algorithms [3,26]. In the 
identifi cation of mathematical models of viscoelastic 
material orthogonal series expansion approach is used 
both for linear materials, e.g., [15,19,20], and for nonlinear 
materials for example in [3]. The Hermite polynomi-
als are applied for systems identifi cation, for example 
in [6].

MODELS

Assume that H(v) L
2
(0, ), where L

2
(0, ) is the space 

of square-integrable functions on the interval (0, ). The 
respective suffi cient conditions are given in [21; Part II: 
Theorem 3]. Let h

k
(v), k = 0,1, ; let the Hermite func-

tions be given by [12]:

( ) ( ) ( )
2

2

4
0 1

2 !
k k

k
h e P , k , ,

k

ανα
ν αν

π

−= = …, (2)

where: P
k
(x) is Hermite polynomial of degree k de-

fi ned by recursive formula [12]:

( ) ( ) ( ) ( )1 22 2 1 2 3k k kP x xP x k P x , k , ,− −= − − = …, (3)

starting with:

P
0
(x) = 1 and P

1
(x) = 2x, (4)

where: >0 is a time-scaling factor.
We assume that the model of the relaxation spectrum 

is to be selected within the parametric class of models 
defi ned by the fi nite sum:

( ) ( )
1

0

K

K k k

k

H g hν ν
−

=

= ∑ , (5)

where: g
k
 are constant model parameters, the lower 

index of H
K
(v) is the number of model summands. Then, 

the respective model of the relaxation modulus is de-
scribed by:

( ) ( ) ( )
1

00

K
t

K K k k

k

G t H e d g tνν ν φ
∞ −

−

=

= = ∑∫ , (6)

where, according to equation (1), the functions 
k
(t)

are defi ned as:

( ) ( )
0

tv
k kt h e dvφ ν

∞
−= ∫ . (7)

The useful recursive form of the basis functions 
k
(t)

is given by the following theorem; the proof, as well as 
the proofs of the next results, is omitted due to space 
limitations.

Theorem 1. Let >0 and t 0. Then the basis functions 

k
(t) (7) are given by the recursive formula:
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starting with:

( ) ( ) ( )( )
2 24
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( ) ( )1 04

2 2
t t tφ φ

αα π
= − , (10)
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Fig. 1. The Hermite basis functions h
k
(v) for parameters: (a)  = 1[s] and (b)  = 10[s]; k = 0,1,2,3,4



ON DETERMINATION OF THE RELAXATION SPECTRUM  OF VISCOELASTIC 219

where the function:

( )
22

0t

x

erfc x e dt , x
π

∞
−= ≥∫ , (11)

is complementary error function [12].

The values P
k
(0) of Hermite polynomials are given by:

  P
2k

(0) = (–1)k (2k)!/k! and P
2k+1

(0) = (0). (12)

A few fi rst basis functions h
k
(v) are shown in Figure 

1 for two different values of the time-scaling factor ;
the corresponding functions 

k
(t) are plotted in Figure 2. 

Note that from Figure 2 it is evident that the basis 
functions are congruent to the real relaxation modulus 
obtained in experiment. The parameter >0 is the time-
scaling factor. The following rule holds: the lower the 
parameter  is, the shorter the relaxation times are, i.e. 
the greater are the relaxation frequencies. The above is 
illustrated by Figures 1 and 2. What must be done to 
salvage it is to fi nd some way of determining the basis 
functions which ‘look like’ the real relaxation modulus. 
To further this end, we must choose the respective time 
scale factor .

AUGMENTED MODEL

It is well-known [5,16,19] that for many materials 
lim

t
G(t) = G >0, where G  is the long-term modulus. 

It is also the case of the beet root sample, which is con-
sidered in [22; Example 3]. Thus, instead of the classi-
cal model (6), it is convenient to consider the following 
augmented model:

( ) ( ) ( )
0

t
K K KG t H e d G G t Gνν ν

∞
−

∞ ∞= + = +∫ . (13)

Then, the relaxation spectrum model takes the form:

( ) ( ) ( )K KH H Gν ν δ ν∞= + , (14)

where: H
K
(v) is given by (5) and (v) denotes the 

Dirac delta function. Unbounded component G (v) of 
the relaxation spectrum ( )KH ν  (14) corresponds with 
the relaxation frequency equal to zero, or equivalently, 
with infi nite relaxation time. 

IDENTIFICATION PROBLEM

Classical manner of studying viscoelasticity is by 
two-phase stress relaxation test, where the time-dependent 
shear stress is studied for step increase in strain [16, 24]. 
In the fi rst initial phase the strain should be imposed 
instantaneously. During the second phase the correspond-
ing force induced in the specimen, which decreases with 
time, is measured.

Suppose a stress relaxation test performed on the spec-
imen of the material under investigation resulted in a set 
of measurements of the modulus ( ) ( ) ( )i i iG t G t z t= +  at 
the sampling instants t

i
0, i = 1, ,N, where z(t

i
) is meas-

urement noise.
Identifi cation consists of selection within the given 

class of models defi ned by (6), (13) of such a model, 
which ensures the best fi t to the measurement results. 
As a measure of the model (6), (13) accuracy the square 
index commonly used in identifi cation theory [6, 10, 19, 
20] and experimental studies [11, 19, 20] is taken:

( ) ( ) ( )
2 2

2
1

N

N K i K i N N,K K

i

Q G t G t
=

 = − = − ∑g G gΦ , (15)

where: ||  ||
2
 denotes the square norm in the Euclidean 

space, g
K
 = [g

0
g

K–1
G ] is an (K+1) – element vector of 

unknown coeffi cients of the model (6), (13). The N×(K+1) 
– element matrix 

N,K
 and the vector NG  are defi ned as:

( ) ( )

( ) ( )

( )

( )

0 1 1 1 1

0 1

1

,

1

K

N,K N

N K N N

t t G t

t t G t

φ φ

φ φ

−

−

  
  = =   
     

…

⋮ ⋱ ⋮ ⋮ ⋮

…

GΦ . (16)

Thus, the optimal identifi cation of relaxation spec-
trum in the class of functions ( )KH ν  given by (5), (14) 
consists of solving, with respect to the model parameter 
g

K
, the least-squares problem with the index (15). The 

matrix 
N,K

 is usually ill-conditioned. Then, the minimum 
of (15) is not unique and even the normal (minimum 
Euclidean norm) solution of the linear-quadratic problem 
(15)-(16) is non-continuous and unbounded function of the 
data vector NG , i.e. when the data are noisy even small 
changes in NG  would lead to arbitrarily large artefact in 

N
Kg . This is a crucial point of the problem. To deal with 

the ill-posedness, the Tikhonov regularization method is 
used as presented in the subsequent section.
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Fig. 2. Functions 
k
(t) of Hermite algorithm, the parameters: (a)  = 1[s] and (b)  = 10[s]; k = 0,1,2,3,4



ANNA STANKIEWICZ220

REGULARIZATION

Tikhonov regularization [23] strives to stabilize the 
computation of the least-squares solution by minimizing 
a modifi ed square functional of the form:

2 2

22K
K

N N,K K K
R

min λ
∈

− +
g

G g gΦ , (17)

where: >0 is a regularization parameter. The above 
problem is well-posed, that is the solution always exists, 
is unique, and continuously depends on both the matrix 

N,K
 as well as on the measurement data NG . The model 

parameter vector minimizing (17) is given by:

( ) 1

1 1
T T

K N,K N,K K ,K N,K N
λ λ

−

+ += +g I GΦ Φ Φ , (18)

where: I
K+1, K+1

 is (K+1)×(K+1) identity matrix. 

The choice of regularization parameter  is crucial 
to identify the best model parameters. Here we apply the 
guaranteed model approximation (GMA) rule, which is 
presented in details below. The choice of the regulariza-
tion parameter according to GMA does not depend on 
a priori knowledge about the noise variance.

ALGEBRAIC BACKGROUND

For numerical computation of regularized solution 
(18), the singular value decomposition (SVD) technique 
will be used. Let SVD of the matrix of the matrix 

N,K

take the form [17]:

T
N,K = U VΦ Σ , (19)

where: V RK+1, K+1 and U RN, N are orthogonal matrices 
and  = diag(

1
, ,

r
,0, ,0) is N×(K+1) diagonal matrix 

containing the non-zero singular values 
1
, ,

r
 of the 

matrix 
N,K

 with r = rank(
K,K

) [17]. Taking advantage 
of the diagonal structure of  and the matrices V and U
orthogonality, it may be simply proved that [19]:

T
K N
λ

λ=g V U GΛ , (20)

where: the diagonal structure matrix  is as follows:

( ) ( )( )2 2
1 1 0 0r rdiag , , , , ,λΛ σ σ λ σ σ λ= + +… … . (21)

GUARANTEED MODEL APPROXIMATION

We wish to introduce a simple rule for the choice of the 
regularization parameter, in which the value of the identifi -
cation index is directly taken into account. It may be proved 
that for an arbitrary >0 the following equality holds:

( )
( )

( )
2 2

2
21

r
Ni

N K N K

i
i

y
Q Qλ λ

σ λ=

= +
+

∑g g , (22)

where: 
N
Kg  of the normal solution of the least-squares 

task (15)-(16) for noise-free data G
N
 = [G(t

1
) G(t

N
)] 

and y
i
 are the elements of the vector T

N=Y U G . Hence 

( ) ( )N
N K N KQ Qλ >g g . The deterioration of the model 

quality is a result of the stabilization of the linear least-

squares task (15). However, the assessment of model 

quality is typically based on how the model performs 

when it attempts to reproduce the measured data. This 

is the viewpoint we are going to adopt. Focusing then 

more on the model quality in this section we shall intro-

duce the guaranteed model approximation (GMA) rule 

of the choice of the regularization parameter. Some of 

its properties will also be demonstrated. The idea behind 

GMA rule is to choose the regularization parameter so 

that the assumed quality of the model approximation 

index ( )ˆ N
N N KQ Q> g  is achieved, i.e., such a parameter  

ˆ for which ( )ˆ ˆ
N K NQ Qλ =g . Appealing to the equation 

(22) this rule consists in solving - with respect to  – of 
the following equation:

( )
( )

2 2

2
21

ˆ
r

Ni
N K N

i
i

y
Q Q

λ

σ λ=

+ =
+

∑ g , (23)

where: ( ) 2

1

NN
N K ii r

Q y
= +

= ∑g . The GMA rule was at 
fi rst applied for the relaxation times spectrum identifi ca-
tion in early authors’ work [18]. This rule seems to be 
quite a natural strategy in the context of relaxation spec-
trum identifi cation task in which the identifi cation index 
refers to the relaxation modulus approximation quality. 
Note that if there exists an 1 i r such that y

i
 0, then 

the quality index ( )N KQ λ
g  is monotonically increasing 

function of >0 (compare eq. (22)). Thus, the equation 
(23) has a unique solution ˆ>0 whenever ( )ˆ N

N N KQ Q> g

and there exists y
i

 0, 1 i r. Simple a posteriori criteria 
for when the last condition is satisfi ed are given by the 
following corollary proved in [19; Property C.1].

Corollary. Let K 1, r = rank(
N,K

)<N and N K. If 
so, there exists an 1 i r such that y

i
 0 if and only if  

1
T

N,K N K +≠ 0GΦ , where 0
K+1

 denotes (K+1)-vector of zero 
elements.

Thus, we now have a more convenient way of char-
acterizing when the solution of GMA rule exists, since 
the SVD decomposition of the matrix 

N,K
 is not required 

here.
Both the function:

( )
( )

( )
2 2

2
21

ˆ
r

Ni
N K N

i
i

y
F , , Q Q

λ
λ

σ λ=

= + −
+

∑Y gΣ , (24)

and the derivative: 

( )
( )

2 2

3
21

2
r

i i

i
i

y
F , ,λ

σ
λ λ

σ λ=

′ =
+

∑YΣ , (25)
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can be expressed by convenient formulas as functions 
of singular values 

1
, ,

r
 and elements y

i
 of the vector 

Y. Thus, in order to fi nd a solution ˆ of equation (23), 
i.e. F (ˆ, ,Y) = 0, the Newton scheme can be success-
fully applied, in which the successive approximation of 
the regularization parameter ˆ is computed according to 
the formula: 

( )
( )1

n
n n

n

F , ,

F , ,λ

λ
λ λ

λ+ = −
′

Y

Y

Σ

Σ
.

An arbitrary 
0

 0 can be taken as an initial point. 
The functions F ( , ,Y) (24) and F'  ( , ,Y) (25) depend 
continuously on every argument. Thus, on the basis of 
the well-known implicit function theorem the solution 
 = ̂  ( ,Y) is continued with respect to the matrix and 

vector Y. Thus, the above GMA rule is well-posed in the 
Hadamard sense. 

A certain interpretation of the GMA rule and im-
portant property of the solution: 

ˆ
ˆ

K K
λ=g g  (26)

are given in the following result. The conclusion fol-
lows immediately from a quick inspection of the proof 
of [18; theorem 2].

Theorem 2. Assume K 1, N K and ( )ˆ N
N N KQ Q> g .

The regularized solution ĝ
K
 defi ned by (23) and (26) is 

the unique solution of the following optimization task:

( )2

2
ˆ

K
K

K N K N
R

min under the constraint Q Qλ

∈
≤

g

g g .

By theorem 2 the GMA rule (23) relies in such a se-
lection of the relaxation spectrum model that the norm of 
the vector ĝ

K
(26) has the smallest possible value among 

all models such that Q
N
(g

K
) Q

N
. Thus the best smoothness 

of the model parameters vector ĝ
K

(26) is achieved. The 
effectiveness of this approach in the context of relaxation 
spectrum identifi cation has been verifi ed by the earlier 
authors’ works, see [18, 19]. 

CONCLUSIONS

The problem of the relaxation spectrum calculation 
from discrete-time linear relaxation modulus noise data 
is solved based on the least-squares approximation of 
the spectrum by fi nite linear combination of the basic 
Hermite functions. As a result, the primary infi nite di-
mensional dynamic optimization problem of the con-
tinuous relaxation spectrum identifi cation is reduced to 
the static linear-quadratic programming task. Tikhonov 
regularization and guaranteed model approximation are 
used to solve it. The analysis of the scheme stability, 
noise robustness, smoothness and convergence as well 
as simulation tests using both artifi cial and experimental 
data are the subject of the next paper [22]. 
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O IDENTYFIKACJI SPECTRUM RELAKSACJI 

MATERIA ÓW LEPKOSPR YSTYCH NA PODSTAWIE 

DYSKRETNYCH POMIARÓW MODU U RELAKSACJI

S t r e s z c z e n i e . Praca dotyczy problemu wyznaczania 
ci g ego spektrum relaksacji materia ów o w asno ciach liniowo-
lepkospr ystych na podstawie dyskretnych zak óconych
pomiarów modu u relaksacji uzyskanych w te cie relaksacji 
napr e . Problem rozwi zano przybli aj c spektrum relaksacji 
sko czonym szeregiem funkcji Hermita optymalnie w sensie 
zregularyzowanej metody najmniejszej sumy kwadratów. Zas-
tosowano regularyzacj  Tichonowa. Wspó czynnik regulary-
zacji dobrano metod  gwarantowanej jako ci modelu (ang. 
guaranteed model approximation). Odpowiedni algorytm iden-
tyfi kacji b dzie przedmiotem nast pnej pracy. 

S o w a  k l u c z o w e : lepkospr ysto , spectrum relak-
sacji, identyfi kacja modelu, regularyzacja, funkcje Hermita.


