PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2014 | 59 | 3 |

Tytuł artykułu

Differences in snail ecology lead to infection pattern variation of Echinostoma spp. larval stages

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The infection patterns of parasites are often tied to host behavior. Although most studies have investigated definitive hosts and their parasites, intermediate host behavior may play a role in shaping the distribution and accumulation of parasites, particularly the larval stages. In an attempt to answer this question, more than 4,500 pulmonate snails were collected from 11 states in the mid-Atlantic and Midwestern United States in the summer of 2012. These snails were necropsied and echinostome metecercariae were commonly observed infecting the snails as 2nd intermediate hosts (20.0%). The snails included species of 3 genera with distinct differences in the infection patterns of Echinostoma spp. metacercariae among them. Physa spp. (comprising of P. acuta and P. gyrina) snails exhibited a significantly higher prevalence of infection (23.5%) than both Lymnaea columella (11.6%) and Helisoma spp. (comprising of H. anceps and H. trivolvis) (14.2%; P < 0.05), with no difference in prevalence observed between the latter 2 genera (P > 0.05). The intensity of metacercariae within the snail hosts was significantly different between the 3 genera (P < 0.05), with L. columella having the highest intensity (24.3 ± 5.6), followed by Physa spp. (15.2 ± 1.5) and Helisoma spp. (5.0 ± 0.9). Differences in prevalence and intensity were also observed when the different snail families co-habited the same body of water. The disparities in infection patterns are likely due to distinct differences in the behavioral and feeding ecology of the snail hosts.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

59

Numer

3

Opis fizyczny

p.502-509,fig.,ref.

Twórcy

  • Department of Biology, Wake Forest University, 1834 Gulley Dr., Winston-Salem, North Carolina 27106, USA
autor
  • Department of Biology, Wake Forest University, 1834 Gulley Dr., Winston-Salem, North Carolina 27106, USA
autor
  • Department of Biology, Wake Forest University, 1834 Gulley Dr., Winston-Salem, North Carolina 27106, USA

Bibliografia

  • Bickel D. 1965. The role of aquatic plants and submerged structures in the ecology of a freshwater pulmonate snail, Physa integra Hald. Sterkiana, 18, 17–20.
  • Boss C.N., Laman T.G., Blankespoor H.D. 1984. Dispersal movements of four species of pulmonate and operculate snails in Douglas Lake, Michigan. The Nautilus, 98, 80–83.
  • Bovbjerg R. 1965. Feeding and dispersal in the snail Stagnicola reflexa (Basommatophora: Lymnaeidae). Malacologia, 2, 199–207.
  • Bovbjerg R. 1968. Responses to food in lymnaeid snails. Physiological Zoology, 41, 412–423.
  • Bovbjer R. 1975. Dispersal and dispersion of pond snails in an experimental environment varying to three factors, singly and in combination. Physiological Zoology, 48, 203–215.
  • Bush A.O., Lafferty K.D., Lotz J.M, Schostak A.W. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology, 83, 573–583.
  • Calow P. 1973. Field observations and laboratory experiments on the general food requirements of two species of freshwater snail, Planorbis contortus and Ancylus fluviatilis. Proceedings of the Malacological Society of London, 40, 483–490.
  • Calow P. 1974. Evidence for bacterial feeding in Planorbis contortus L. (Gastropoda: Pulmonata). Proceedings of the Malacological Society of London, 20, 33–49.
  • Calow P. 1975. The feeding strategies of two freshwater gastropods, Ancylus fluviatilis and Planorbis contortus L. in terms of ingestion rates and absorption efficiencies. Oecologia, 20, 33–49. DOI: 10.1007/BF00364320.
  • Charnov E., Orians G., Hyatt K. 1976. Ecological implications of resource depression. American Naturalist, 110, 247–259.
  • Clampitt P.T. 1970. Comparative ecology of the snails Physa gyrina and Physa integra. Malacologia, 10, 113–151.
  • Clampitt P.T. 1975. How fast is a snail’s pace? Active and passive dispersal of Physa integra in Douglas Lake, Michigan. Malacological Review, 8, 121.
  • Crowl T, Schnell G. 1990. Factors determining population-density and size distribution of a fresh-water snail in streams — Effects of spatial scale. Oikos, 59, 359–367.
  • Cuker B. 1983. Competition and coexistence among the grazing snail Lymnaea, Chironomidae, and microcrustacea in an arctic epilithic lacustrine community. Ecology, 64, 10–15.
  • Detwiler J.T. 2010. The molecular ecology of echinostome trematodes: Elucidating the phylogenetics and transmission dynamics of a freshwater helminth parasite. Ph.D. Dissertation. Purdue University, West Lafayette, Indiana.
  • Detwiler J.T, Minchella D.J. 2009. Intermediate host availability masks the strength of experimentally-driven colonization patterns in echinostome trematodes. International Journal for Parasitology, 39, 585–590. DOI: 10.1016/j.ijpara.2008.10.008.
  • Detwiler J.T., Zajac A.M., Minchella D.J., Belden, L.K. 2012. Revealing cryptic parasite diversity in a definitive host: Echinostomes in muskrats. Journal of Parasitology 98: 1148–1155. DOI: 10.1645/GE-3117.1.
  • Dillon R.T. 2000. The ecology of freshwater molluscs. Cambridge University Press, Cambridge, UK, 524 pp.
  • Esteban J. C., Munoz-Antoli C. 2009. Echinostomes: Systematics and life cycles. In: (Eds. B.R. Fried, R. Toledo), The biology of echinostomes: From the molecule to the community, Springer, LLC, New York, 1–34.
  • Ezenwa A. 2004. Host social behaviour and parasitic infection: A multifactorial approach. Behavioral Ecology, 15, 446–454. DOI: 10.1093/beheco/arh028.
  • Freeland W. 1976. Pathogens and evolution of primate sociality. Biotropica, 8, 12–24.
  • Foster G. 1973. Soil type and habitat of the aquatic snail Lymnaea (Galba) bulinoides Lea during the dry season. Basteria, 37, 41–46.
  • Fried B., Peoples R.C., Saxton T.M., Huffman J.E. 2008. The association of Zygocotyle lunata and Echinostoma trivolvis with Chaetogaster limnaei limnaei, an ectosymbiont of Helisoma trivolvis. Journal of Parasitology, 94, 553–554. DOI: 10.1645/GE-1388.1
  • Griggs J.L., Belden L.K. 2008. Effects of atrazine and metolachlor on the survivorship and infectivity of Echinostoma trivolvis trematode cercariae. Archives of Environmental Contamination and Toxicology, 54, 195–202. DOI: 10.1007/s00244-007-9029-x
  • Hall S.R., Becker C.R., Simonis, J.L., Duffy M.A., Tessier A.J., Caceres C.E.. 2009. Friendly competition: Evidence for a dilution effect among competitors in a planktonic host-parasite system. Ecology, 90, 791–801. DOI: 10.1890/08-0838.1.
  • Harris R.E., Charleston A.G. 1977. An examination of the marsh microhabitats of Lymnaea tomentosa and L. columella (Mollusca: Gastropoda) by path analysis. New Zealand Journal of Zoology, 4, 395–399. DOI: 10.1080/03014223.1977.9517964.
  • Hunter R. 1980. Effects of grazing on the quantity and density of freshwater aufwuchs. Hydrobiologia, 69, 251–259. DOI: 10.1007/BF00046800.
  • Johnson P.T.J., McKenzie V.J. 2009. Effects of environmental change on helminth infections in amphibians: Exploring the emergence of Ribeiroia and Echinostoma infections in North America. In: (Eds. B.R. Fried, R. Toledo R.) The biology of echinostomes: From the molecule to the community, Springer, LLC, New York, 249–280.
  • Johnson P.T.J., Thieltges D.W. 2010. Diversity, decoys and the dilution effect: How ecological communities affect disease risk. The Journal of Experimental Biology, 213, 961–970. DOI: 10.1242/jeb.037721.
  • Liang Y. 1974. Cultivation of Bulinus (Physopsis) globosus and Biomphalaria pfeifferi pfeifferi, snail hosts of schistosomiasis. Sterkiana, 53–54, 1–75.
  • Loehle C. 1995. Social barriers to pathogen transmission in wild animal populations. Ecology, 76, 326–335.
  • Lowe R.L., Hunter R.D. 1988. Effect of grazing by Physa integra on periphyton community structure. Journal of the North American Benthological Society, 7, 29–36.
  • Loys R.E., van Oosterhout C., Cable J. 2010. Sex-specific differences in shoaling affect parasite transmission in guppies. PLoS One, 10, e13285. DOI: 10.1371/journal.pone.0013285.
  • Malek E. 1958. Factors conditioning the habitat of bilharziasis intermediate hosts of the family Planoribidae. Bulletin of the World Heath Organization 18: 785–818.
  • Moller A., Dufva R., Allander K. 1993. Parasites and the evolution of host social behavior. Advances in the Study of Behavior, 22, 65–102.
  • Morely N.J., Lewis J.W., Adam, M.E. 2004. Metacercarial utilization of a naturally infected single species (Lymnaea peregra) snail community by Echinoparyphium recurvatum. Journal of Helminthology, 78, 51–56. DOI: 10.1079/JOH2003201.
  • Morgan J.A.T., Blair D. 1995. Nuclear rDNA ITS sequenc variation in the trematode genus Echinostoma: An aid to establishing relationships within the 37-collar-spine group. Parasitology, 111, 609–615. DOI: 10.1017/S003118200007709X.
  • Reavell P. 1980. A study of the diets of some British freshwater gastropods. Journal of Conchology, 30, 253–271.
  • Sapp K.K., Esch G.W. 1994. The effects of spatial and temporal heterogeneity as structuring forces for parasite communities in Helisoma anceps and Physa gyrina. American Midland Naturalist, 132, 91–103. DOI: 10.2307/2426204.
  • Schmidt K.A., Fried B.F. 1997. Prevalence of larval trematodes in Helisoma trivolvis (Gastropoda) from a farm pond in Northampton County, Pennsylvania with special emphasis on Echinostoma trivolvis (Trematoda) cercariae. Journal of the Helminological Society of Washington, 64, 157–159.
  • Sheldon S.P. 1987. The effects of herbivorous snails on submerged communities in Minnesota lakes. Ecology, 68, 1920–1931.
  • Storey R. 1970. The importance of mineral particles in the diet of Limnaea pereger (Muller). Journal of Conchology, 27, 191–195.
  • Swamikannu X., Hoagland K. 1989. Effects of snail grazing on the diversity and structure of a periphyton community in a eutrophic pond. Canadian Journal of Aquatic Science, 46, 1698–1704. DOI: 10.1139/f89-215.
  • Walter J. 1980. The density of the pond snails Lymnaea auricularia and L. peregra in Lake Zurich (Gastropoda: Basommatophora). Schweizerische Zeitschrift fur Hydrologie, 42, 65–71.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-fc370fed-d2df-40c8-aacf-e062ff73f593
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.