PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 74 | 06 |

Tytuł artykułu

Staphylococcus pseudintermedius, both commensal and pathogen

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Staphylococcus pseudintermedius is considered to be a both commensal and opportunistic canine pathogen. The anal, perineal and nasal locations appear to be the main S. pseudintermedius colonization sites, from which bacteria are transmitted to other body sites, causing secondary infections. When the immune system is compromised because of an underlying condition, the skin becomes susceptible to infection. Thus, the host’s condition seems to play a crucial role in the pathogenesis of S. pseudintermedius infections. There are some predisposing factors, one of which is atopic dermatitis. The pathogenic effects of S. pseudintermedius are mediated by several virulence factors, for instance superantigens, which play an important role by causing dermatitis. The immune system has evolved many different mechanisms to recognize and deal with pathogens, but bacteria have also developed various strategies to evade them. In this review, we focus on early stages of the innate immune response with particular emphasis on the mechanisms of recognition of staphylococci and the action of antimicrobial peptides.

Wydawca

-

Rocznik

Tom

74

Numer

06

Opis fizyczny

p.362-370,ref.

Twórcy

  • Division of Microbiology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
autor
  • Division of Microbiology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
autor
  • Division of Small Animal Internal Diseases, Department of Small Animals with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
  • Division of Microbiology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
  • Division of Microbiology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
autor
  • Division of Microbiology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
autor
  • Division of Microbiology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland

Bibliografia

  • Abraham J. L., Morris D. O., Griffeth G. C., Shofer F. S., Rankin S. C.: Survivalence of healthy cats and cats with inflammatory skin disease for colonization of the skin by methicillin-resistant coagulase-positive staphylococci and Staphylococcus schleiferi subsp. schleiferi. Vet. Dermatol. 2007, 18, 252-259.
  • Askarian F., van Sorge N. M., Sangvik M., Beasley F. C., Henriksen J. R., Sollid J. U., van Strijp J. A., Nizet V., Johannessen M.: A Staphylococcus aureus TIR domain protein virulence factor blocks TLR2-mediated NF-κB signaling. J. Innate Immun. 2014, 6, 485-498.
  • Aufiero B., Guo M., Young C., Duanmu Z., Talwar H., Lee H. K., Murakawa G. J.: Staphylococcus aureus induces the expression of tumor necrosis factor-alpha in primary human keratinocytes. Int. J. Dermatol. 2007, 46, 687-694.
  • Bannoehr J., Guardabassi L.: Staphylococcus pseudintermedius in the dog: taxonomy, diagnostics, ecology, epidemiology and pathogenicity. Vet. Dermatol. 2012, 23, 253-266.
  • Banovic F., Linder K., Olivry T.: Clinical, microscopic and microbial characterization of exfoliative superficial pyoderma-associated epidermal collarettes in dogs. Vet. Dermatol. 2016, 28, 107-e23.
  • Bardoel B. W., Vos R., Bouman T., Aerts P. C., Bestebroer J., Huizinga E. G., Brondijk T. H., van Strijp J. A., de Haas C. J.: Evasion of Toll-like receptor 2 activation by staphylococcal superantigen-like protein 3. J. Mol. Med. 2012, 90, 1109-1120.
  • Blander J. M., Medzhitov R.: Regulation of phagosome maturation by signals from Toll-like receptors. Science 2004, 304, 1014-1018.
  • Brogden K. A., Ackermann M., McCray Jr P. B., Tack B. F.: Antimicrobial peptides in animals and their role in host defences. Int. J. Antimicrob. Agents 2003, 22, 465-478.
  • Cederlund A., Gudmundsson G. H., Agerberth B.: Antimicrobial peptides important in innate immunity. FEBS J. 2011, 278, 3942-3951.
  • Chavakis T., Preissner K. T., Herrmann M.: The anti-inflammatory activities of Staphylococcus aureus. Trends Immunol. 2007, 28, 408-418.
  • Cho S. H., Strickland I., Boguniewicz M., Leung D. Y.: Fibronectin and fibrinogen contribute to the enhanced binding of Staphylococcus aureus to atopic skin. J. Allergy Clin. Immunol. 2001, 108, 269-274.
  • Chrobak D., Kizerwetter-Świda M., Rzewuska M., Moodley A., Guardabassi L., Binek M.: Molecular characterization of Staphylococcus pseudintermedius strains isolated from clinical samples of animal origin. Folia Microbiol. 2011, 56, 415-422.
  • Clarke S. R., Mohamed R., Bian L., Routh A. F., Kokai-Kun J. F., Mond J. J., Tarkowski A., Foster S. J.: The Staphylococcus aureus surface protein IsdA mediates resistance to innate defenses of human skin. Cell Host Microbe. 2007, 1, 199-212.
  • Classen A., Kalali B. N., Schnopp C., Andres C., Aguilar-Pimentel J. A., Ring J., Ollert M., Mempel M.: TNF receptor I on human keratinocytes is a binding partner for staphylococcal protein A resulting in the activation of NF kappa B, AP-1, and downstream gene transcription. Exp. Dermatol. 2011, 20, 48-52.
  • Cole A. M., Liao H. I., Stuchlik O., Tilan J., Pohl J., Ganz T.: Cationic polypeptides are required for antibacterial activity of human airway fluid. J. Immunol. 2002, 169, 6985-6991.
  • Cunnion K. M., Hair P. S., Buescher E. S.: Cleavage of complement C3b to iC3b on the surface of Staphylococcus aureus is mediated by serum complement factor I. Infect. Immun. 2004, 72, 2858-2863.
  • Damme C. M. M. van, Willemse T., van Dijk A., Haagsman H. P., Veldhuizen E. J. A.: Altered cutaneous expression of β-defensins in dogs with atopic dermatitis. Mol. Immunol. 2009, 46, 2449-2455.
  • Dani A.: Colonization and infection. Cent. European J. Urol. 2014, 67, 86-87.
  • Devriese L. A., DePelsmaecker K.: The anal region as a main carrier site of Staphylococcus intermedius and Streptococcus canis in dogs. Vet. Record. 1987, 121, 302-303.
  • Diribe O., Thomas S., AbuOun M., Fitzpatrick N., La Ragione R.: Genetic relatedness and characterization of Staphylococcus pseudintermedius associated with post-operative surgical infections in dogs. J. Med. Microbiol. 2015, 64, 1074-1081.
  • Dragneva Y., Anuradha C. D., Valeva A., Hoffmann A., Bhakdi S., Husmann M.: Subcytocidal attack by staphylococcal alpha-toxin activates NF-κB and induces interleukin-8 production. Infect. Immun. 2001, 69, 2630-2635.
  • Dziarski R., Gupta D.: Staphylococcus aureus peptidoglycan is a toll-like receptor 2 activator: a reevaluation. Infect. Immun. 2005, 73, 5212-5216.
  • Elinav E., Strowig T., Henao-Mejia J., Flavell R. A.: Regulation of the antimicrobial response by NLR proteins. Immunity 2011, 34, 665-679.
  • Favrot C., Steffan J., Seewald W., Picco F.: A prospective study on the clinical features of chronic canine atopic dermatitis and its diagnosis. Vet. Dermatol. 2010, 21, 23-30.
  • Fazakerley J., Nuttall T., Sales D., Schmidt V., Carter S. D., Hart C. A., McEwan N. A.: Staphylococcal colonization of mucosal and lesional skin sites in atopic and healthy dogs. Vet. Dermatol. 2009, 20, 179-184.
  • Fazakerley J. R., Crossley J., McEwan N., Carter S., Nuttall T.: In vitro antimicrobial efficacy of beta-defensin 3 against Staphylococcus pseudintermedius isolates from healthy and atopic canine skin. Vet. Dermatol. 2010b, 21, 463-468.
  • Fazakerley J. R., Williams N., Carter S., McEwan N., Nuttal T.: Heterogeneity of Staphylococcus pseudintermedius isolates from atopic and healthy dogs. Vet. Dermatol. 2010a, 21, 578-585.
  • Fedtke I., Gotz F., Peschel A.: Bacterial evasion of innate host defenses – the Staphylococcus aureus lesson. Int. J. Med. Microbiol. 2004, 294, 189-194.
  • Fitzgerald J. R.: The Staphylococcus intermedius group of bacterial pathogens: species reclassification, pathogenesis and the emergence of methicillin resistance. Vet. Dermatol. 2009, 20, 490-495.
  • Forsythe P. J., Hill P. B., Thoday K. L., Brown J.: Use of computerized image analysis to quantify staphylococcal adhesion to canine corneocytes: does breed and body site have any relevance to the pathogenesis of pyoderma? Vet. Dermatol. 2002, 13, 29-36.
  • Foster T. J.: Colonization and infection of the human host by staphylococci: adhesion, survival and immune evasion. Vet. Dermatol. 2009, 20, 456-470.
  • Futagawa-Saito K., Makino S., Sunaga F., Kato Y., Sakurai-Komada N., Ba-Thein W., Fukuyasu T.: Identification of first exfoliative toxin in Staphylococcus pseudintermedius. FEMS Microbiol. Lett. 2009, 301, 176-180.
  • Garthwaite G., Lloyd D. H., Thomsett L. R.: Location of immunoglobulins and complement (C3) at the surface and within the skin of dogs. J. Comp. Pathol. 1983, 93, 185-193.
  • Geoghegan J. A., Smith E. J., Speziale P., Foster T. J.: Staphylococcus pseudintermedius expresses surface proteins that closely resemble those from Staphylococcus aureus. Vet. Microbiol. 2009, 138, 345-352.
  • Griffeth G. C., Morris D. O., Abraham J. L., Shofer F. S., Rankin S. C.: Screening for skin carriage of methicillin-resistant coagulase-positive staphylococci and Staphylococcus schleiferi in dogs with healthy and inflamed skin. Vet. Dermatol. 2008, 19, 142-149.
  • Hajjar A. M., O’Mahony D. S., Ozinsky A., Underhill D. M., Aderem A., Klebanoff S. J., Wilson C. B.: Cutting edge: functional interactions between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J. Immunol. 2001, 166, 15-19.
  • Hartmann F. A., White D. G., West S. E. H., Walker R. D., DeBoer D. J.: Molecular characterization of Staphylococcus intermedius carriage by healthy dogs and comparison of antimicrobial susceptibility patterns to isolates from dogs with pyoderma. Vet. Microbiol. 2005, 108, 119-131.
  • Hashimoto M., Tawaratsumida K., Kariya H., Kiyohara A., Suda Y., Krikae F., Kirikae T., Götz F.: Not lipoteichoic acid but lipoproteins appear to be the dominant immunobiologically active compounds in Staphylococcus aureus. J. Immunol. 2006, 177, 3162-3169.
  • Hendricks A., Schuberth H. J., Schueller K., Lloyd D. H.: Frequency of superantigen-producing Staphylococcus intermedius isolates from canine pyoderma and proliferation-inducing potential of superantigens in dogs. Res. Vet. Sci. 2002, 73, 273-277.
  • Hillier A., Lloyd D. H., Weese J. S., Blondeau J. M., Boothe D., Breitschwerdt E., Guardabassi L., Papich M. G., Rankin S., Turnidge J. D., Sykes J. E.: Guidelines for the diagnosis and antimicrobial therapy of canine superficial bacterial folliculitis (Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases). Vet. Dermatol. 2014, 25, 163-e43.
  • Himsworth C. G., Patrick D. M., Parsons K., Feng A., Weese J. S.: Methicillinresistant Staphylococcus pseudintermedius in rats. Emerg. Infect. Dis. 2013, 19, 169-170.
  • Hoffmann A. R., Patterson A. P., Diesel A., Lawhon S. D., Ly H. J., Elkins Stephenson C., Mansell J., Steiner J. M., Dowd S. E., Olivry T., Suchodolski J. S.: The skin microbiome in healthy and allergic dogs. PLoS One 2014, 9, e83197.
  • Hoovels L. van, Vankeerberghen A., Boel A., van Vaerenbergh K., De Beenhouwer H.: First case of Staphylococcus pseudintermedius infection in a human. J. Clin. Microbiol. 2006, 44, 4609-4612.
  • Inden K., Kaneko J., Miyazato A., Yamamoto N., Mouri S., Shibuya Y., Nakamura K., Aoyagi T., Hatta M., Kunishima H., Hirakata Y., Itoh Y., Kaku M., Kawakami K.: Toll-like receptor 4-dependent activation of myeloid dendritic cells by leukocidin of Staphylococcus aureus. Microbes Infect. 2009, 11, 245-253.
  • Ihrke P. J.: An overview of bacterial skin disease in the dog. Br. Vet. J. 1987, 143, 112-118.
  • Iyori K., Hisatsune J., Kawakami T., Shibata S., Murayama N., Ide K., Nagata M., Fukata T., Iwasaki T., Oshima K., Hattori M., Sugai M., Nishifuji K.: Identification of a novel Staphylococcus pseudintermedius exfoliative toxin gene and its prevalence in isolates from canines with pyoderma and healthy dogs. FEMS Microbiol. Lett. 2010, 312, 169-175.
  • Iyori K., Futagawa-Saito K., Hisatsune J., Yamamoto M., Sekiguchi M., Ide K., Son W. G., Olivry T., Sugai M., Fukuyasu T., Iwasaki T., Nishifuji K.: Staphylococcus pseudintermedius exfoliative toxin EXI selectively digests canine desmoglein 1 and causes subcorneal clefts in canine epidermis. Vet. Dermatol. 2011, 22, 319-326.
  • Jaeger K., Linek M., Power H. T., Bettenay S. V., Zabel S., Rosychuk R. A. W., Mueller R. S.: Breed and site predispositions of dogs with atopic dermatitis: a comparison of five locations in three continents. Vet. Dermatol. 2010, 21, 118-122.
  • Keane K. A., Taylor D. J.: Slime-producing species in canine pyoderma. Vet. Rec. 1992, 130, 697-701.
  • Kizerwetter-Świda M., Chrobak-Chmiel D., Rzewuska M., Binek M.: Staphylococcus pseudintermedius – trudno rozpoznawalny patogen. Post. Mikrobiol. 2015, 54, 103-114.
  • Koymans K. J., Feitsma L. J., Brondijk T. H., Aerts P. C., Lukkien E., Lössl P., van Kessel K. P., de Haas C. J., van Strijp J. A., Huizinga E. G.: Structural basis for inhibition of TLR2 by staphylococcal superantigen-like protein 3 (SSL3). Proc. Natl. Acad. Sci. USA 2015, 12, 11018-11023.
  • Kisich K. O., Howell M. D., Boguniewicz M., Heizer H. R., Watson N. U., Leung D. Y.: The constitutive capacity of human keratinocytes to kill Staphylococcus aureus is dependent on beta-defensin 3. J. Invest. Dermatol. 2007, 127, 2368-2380.
  • Kraus D., Peschel A.: Staphylococcus aureus evasion of innate antimicrobial defense. Future Microbiol. 2008, 3, 437-451.
  • Krishna S., Miller L. S.: Innate and adaptive immune responses against Staphylococcus aureus skin infections. Semin. Immunopathol. 2012, 34, 261-280.
  • Kumari S., Bonnet M. C., Ulvmar M. H., Wolk K., Karagianni N., Witte E., Uthoff-Hachenberg C., Renauld J. C., Kollias G., Toftgard R., Sabat R., Pasparakis M., Haase I.: Tumor necrosis factor receptor signaling in keratinocytes triggers interleukin-24-dependent psoriasis-like skin inflammation in mice. Immunity 2013, 39, 899-911.
  • Latronico F., Moodley A., Nielsen S. S., Guardabassi L.: Enhanced adherence of methicillin-resistant Staphylococcus pseudintermedius sequence type 71 to canine and human corneocytes. Vet. Res. 2014, 45, 70.
  • Leonard B. C., Marks S. L., Outerbridge C. A., Affolter V. K., Kananurak A., Young A., Moore P. F., Bannasch D. L., Bevins C. L.: Activity, expression and genetic variation of canine β-defensin 103: a multifunctional antimicrobial peptide in the skin of domestic dogs. J. Innate Immun. 2012, 4, 248-259.
  • Lloyd D. H., Garthwaite G.: Epidermal structure and surface topography of canine skin. Res. Vet. Sci. 1982, 33, 99-104.
  • Marsella R., Olivry T.: Animal models of atopic dermatitis. Clin. Dermatol. 2003, 21, 122-133.
  • Mason I. S., Lloyd D. H.: The role of allergy in the development of canine pyoderma. J. Small Anim. Pract. 1989, 30, 216-218.
  • Mason I. S., Lloyd D. H.: Factors influencing the penetration of bacterial antigens through canine skin. Von Tscarner C., Halliwell R.E.W. Advances in Veterinary Dermatology 1990, 1, 370-374.
  • Mason I. S., Lloyd D. H.: Scanning electron microscopical studies of the living epidermis and stratum corneum of dogs, [in:] Ihrke P. J., Mason I. S., White S. D.: Advances in Veterinary Dermatology 1993, 2, 131-139.
  • Mazzilli M., Zecconi A.: Assessment of epithelial cells’ immune and inflammatory response to Staphylococcus aureus when exposed to a macrolide. J. Dairy Res. 2010, 77, 404-410.
  • McEwan N. A.: Adherence by Staphylococcus intermedius to canine keratinocytes in atopic dermatitis. Res. Vet. Sci. 2000, 68, 279-283.
  • McEwan N. A., Kalna G., Mellor D.: A comparison of adherence by four strains of Staphylococcus intermedius and Staphylococcus hominis to canine corneocytes collected from normal dogs and dogs suffering from atopic dermatitis. Res. Vet. Sci. 2005, 78, 193-198.
  • McEwan N. A., Mellor D., Kalna G.: Adherence by Staphylococcus intermedius to canine corneocytes: a preliminary study comparing noninflamed and inflamed atopic canine skin. Vet. Dermatol. 2006, 17, 151-154.
  • Miller L. S.: Toll-like receptors in skin. Adv. Dermatol. 2008, 24, 71-87.
  • Miszczak D., Słońska A., Golke A., Cymerys J.: Herpesviruses survival strategies – latency and apoptosis. Postepy Hig. Med. Dosw. (Online) 2013, 67, 276-287.
  • Momota Y., Shimada K., Noguchi A., Saito A., Nozawa S., Niina A., Tani K., Azakami D., Ishiota K., Sako T.: The modified corneocyte surface area measurement as an index of epidermal barrier properties: inverse correlation with transepidermal water loss. Vet. Dermatol. 2016, 27, 67-e19.
  • Moodley A., Stegger M., Zakour N. L., Fitzgerald J. R., Guardabassi L.: Tandem repeat sequence analysis of staphylococcal protein A (spa) gene in methicillin resistant Staphylococcus pseudintermedius. Vet. Microbiol. 2009, 135, 320-326.
  • Morris D. O., Rook K. A., Shofer F. S., Rankin S. C.: Screening of Staphylococcus aureus, Staphylococcus intermedius and Staphylococcus schleiferi isolates obtained from small companion animals for antimicrobial resistance: a retrospective review of 749 isolates (2003-04). Vet. Dermatol. 2006, 17, 332-337.
  • Muller G.: Bacterial skin diseases, [in:] Scott D. M. W., Griffin C. (eds.): Muller and Kirk’s Small Animal Dermatology. 6th edn. W.B. Saunders Co Philadelphia, PA 2000, p. 274-335.
  • Mullin J., Carter S., Williams N., McEwan N., Nuttall T.: Transcription of canine toll-like receptor 2, β-defensin 1 and β-defensin 103 in infected atopic skin, non-infected atopic skin, healthy skin and the CPEK cell line. Vet. Microbiol. 2013, 162, 700-706.
  • Müller-Anstett M. A., Muller P., Albrecht T., Nega M., Wagener J., Gao Q., Kaesler S., Schaller M., Biedermann T., Götz F.: Staphylococcal peptidoglycan co-localizes with Nod2 and TLR2 and activates innate immune response via both receptors in primary murine keratinocytes. PLoS One 2010, 5, e13153.
  • Onogawa T.: Staphylococcal alpha-toxin synergistically enhances inflammation caused by bacterial components. FEMS Immunol. Med. Microbiol. 2002, 33, 15-21.
  • Ouhara K., Komatsuzawa H., Kawai T., Nishi H., Fujiwara T., Fujiue Y., Kuwabara M., Sayama K., Hashimoto K., Sugai M.: Increased resistance to cationic antimicrobial peptide LL-37 in methicillin-resistant strains of Staphylococcus aureus. J. Antimicrob. Chemother. 2008, 61, 1266-1269.
  • Parker D., Prince A.: Staphylococcus aureus induces type I IFN signaling in dendritic cells via TLR9. J. Immunol. 2012, 189, 4040-4046.
  • Paul N. C., Latronico F., Moodley A., Nielsen S. S., Damborg P., Guardabassi L.: In vitro adherence of Staphylococcus pseudintermedius to canine corneocytes is influenced by colonization status of corneocyte donors. Vet. Res. 2013, 44, 52.
  • Pietrocola G., Gianotti V., Richards A., Nobile G., Geoghegan J. A., Rindi S., Monk I. R., Bordt A. S., Foster T. J., Fitzgerald J. R., Speziale P.: Fibronectin binding proteins SpsD and SpsL both support invasion of canine epithelial cells by Staphylococcus pseudintermedius. Infect. Immun. 2015, 83, 4093-4102.
  • Prévost G., Bouakham T., Piemont Y., Monteil H.: Characterisation of a synergohymenotropic toxin produced by Staphylococcus intermedius. FEBS Lett. 1995, 376, 135-140.
  • Proft T., Fraser J. D.: Bacterial superantigens. Clin. Exp. Immunol. 2003, 133, 299-306.
  • Robinson J.: Colonization and infection of the respiratory tract: What do we know? Pediatr. Child. Health 2004, 9, 21-24.
  • Rooijakkers S. H., Ruyken M., Roos A., Daha M. R., Presanis J. S., Sim R. B., van Wamel W. J., van Kessel K. P., van Strijp J. A.: Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat. Immunol. 2005, 6, 920-927.
  • Rubin J. E., Chirino-Trejo M.: Prevalence, sites of colonization, and antimicrobial resistance among Staphylococcus pseudintermedius isolated from healthy dogs in Saskatoon, Canada. J. Vet. Diagn. Invest. 2011, 23, 351-354.
  • Ruscher C., Lübke-Becker A., Semmler J., Wleklinski C. G., Paasch A., Soba A., Stamm I., Kopp P., Wieler L. H., Walther B.: Widespread rapid emergence of a distinct methicillin- and multidrug-resistant Staphylococcus pseudintermedius (MRSP) genetic lineage in Europe. Vet. Microbiol. 2010, 144, 340-346.
  • Ruzauskas M., Couto N., Pavilonis A., Klimiene I., Siugzdiniene R., Virgailis M., Vaskeviciute L., Anskiene L., Pomba C.: Characterization of Staphylococcus pseudintermedius isolated from diseased dogs in Lithuania. Pol. J. Vet. Sci. 2016, 19, 7-14.
  • Saijonmaa-Koulumies L. E., Lloyd D. H.: Adherence of Staphylococcus intermedius to canine corneocytes in vitro. Vet. Dermatol. 2002, 13, 169-176.
  • Sakoulas G., Guram K., Reyes K., Nizet V., Zervos M.: Human cathelicidin LL-37 resistance and increased daptomycin MIC in methicillin-resistant Staphylococcus aureus strain USA 600 (ST45) are associated with increased mortality in a hospital setting. J. Clin. Microbiol. 2014, 52, 2172-2174.
  • Santoro D., Bunick D., Graves T. K., Segre M.: Evaluation of canine antimicrobial peptides in infected and noninfected chronic atopic skin. Vet. Dermatol. 2013, 24, 39-47.
  • Santoro D., Maddox C. W.: Canine antimicrobial peptides are effective against resistant bacteria and yeasts. Vet. Dermatol. 2014, 25, 35-39.
  • Schmidt V., Nuttal T., Fazakerley J., McEwan N.: Staphylococcus intermedius binding to immobilized fibrinogen, fibronectin and cytokeratin in vitro. Vet. Dermatol. 2009, 20, 501-508.
  • Schmidt V., Williams N. J., Pinchbeck G., Corless C. E., Shaw S., McEwan N., Dawson S., Nuttall T.: Antimicrobial resistance and characterization of staphylococci isolated from healthy Labrador retrievers in the United Kingdom. BMC Vet. Res. 2014, 10, 17.
  • Schwarz S., Kadlec K., Strommenger B.: Methicillin-resistant Staphylococcus aureus and Staphylococcus pseudintermedius detected in the BfT-Germ Vet monitoring programme 2004-2006 in Germany. J. Antimicrob. Chemother. 2008, 61, 282-285.
  • Scott D. W., Muller W. H., Griffin C. E.: Skin immune system and allergic skin diseases, [in:] Muller and Kirk’s small animal dermatology. W. B. Saunders Philadelphia 2001, p. 543-666.
  • Sieprawska-Lupa M., Mydel P., Krawczyk K., Wojcik K., Puklo M., Lupa B., Suder P., Silberring J., Reed M., Pohl J., Shafer W., McAleese F., Foster T., Travis J., Potempa J.: Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob. Agents Chemother. 2004, 48, 4673-4679.
  • Simou C., Thoday K. L., Forsythe P. J., Hill P. B.: Adherence of Staphylococcus intermedius to corneocytes of healthy and atopic dogs: effect of pyoderma, pruritus score, treatment and gender. Vet. Dermatol. 2005a, 16, 385-391.
  • Simou C., Hill P. B., Forsythe P. J., Thoday K. L.: Species specificity in the adherence of staphylococci to canine and human corneocytes: a preliminary study. Vet. Dermatol. 2005b, 16, 156-161.
  • Sorensen O. E., Follin P., Johnsen A. H., Calafat J., Tjabringa G. S., Hiemstra P. S., Borregaard N.: Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 2001, 97, 3951-3959.
  • Stappers M. H., Thys Y., Oosting M., Plantinga T. S., Ioana M., Reimnitz P., Mouton J. W., Netea M. G., Joosten L. A., Gyssens I. C.: TLR1, TLR2, and TLR6 gene polymorphisms are associated with increased susceptibility to complicated skin and skin structure infections. J. Infect. Dis. 2014, 210, 311-318.
  • Summers J. F., Brodbelt D. C., Forsythe P. J., Loeffler A., Hendricks A.: The effectiveness of systemic antimicrobial treatment in canine superficial and deep pyoderma: a systemic review. Vet. Dermatol. 2012, 23, 305-e61.
  • Takeda K., Takeuchi O., Akira S.: Recognition of lipopeptides by Toll-like receptors. J. Endotoxin Res. 2002, 8, 459-463.
  • Tanabe T., Toyoguchi M., Hirano F., Chiba M., Onuma K., Sato H.: Prevalence of staphylococcal enterotoxins in Staphylococcus pseudintermedius isolates from dogs with pyoderma and healthy dogs. Microbiol. Immunol. 2013, 57, 651-654.
  • Taylor J. M., Heinrichs D. E.: Transferrin binding in Staphylococcus aureus: involvement of a cell wall-anchored protein. Mol. Microbiol. 2002, 43, 1603-1614.
  • Terauchi R., Sato H., Hasegawa T., Yamaguchi T., Aizawa C., Maehara N.: Isolation of exfoliative toxin from Staphylococcus intermedius and its local toxicity in dogs. Vet. Microbiol. 2003, 94, 19-29.
  • Terui T., Kato T., Tagami H.: Stratum corneum activation of complement through the antibody-independent alternative pathway. J. Investig. Dermatol. 1989, 92, 593-597.
  • Travassos L. H., Girardin S. E., Philpott D. J., Blanot D., Nahori M. A., Werts C., Boneca I. G.: Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO Rep. 2004, 10, 1000-1006.
  • Walev I., Weller U., Strauch S., Foster T., Bhakdi S.: Selective killing of human monocytes and cytokine release provoked by sphingomyelinase (beta-toxin) of Staphylococcus aureus. Infect. Immun. 1996, 64, 2974-2979.
  • Wang G. S., Epand R. F., Mishra B., Lushnikova T., Thomas V. C., Bayles K. W., Epand R. M.: Decoding the functional roles of cationic side chains of the major antimicrobial region of human cathelicidin LL-37. Antimicrob. Agents Chemother. 2012, 56, 845-856.
  • Watanabe I., Ichiki M., Shiratsuchi A., Nakanishi Y.: TLR2-mediated survival of Staphylococcus aureus in macrophages: a novel bacterial strategy against host innate immunity. J. Immunol. 2007, 178, 4917-4925.
  • Weese J. S., van Duijkeren E.: Methicillin-resistant Staphylococcus aureus and Staphylococcus pseudintermedius in veterinary medicine. Vet. Microbiol. 2010, 140, 418-429.
  • Wettstein K., Descloux S., Rossano A., Perreten V.: Emergence of methicillin-resistant Staphylococcus pseudintermedius in Switzerland: three cases of urinary tract infections in cats. Schweiz Arch. Tierheilkd. 2008, 150, 339-343.
  • Yokoyama R., Itoh S., Kamoshida G., Takii T., Fujii S., Tsuji T., Onozaki K.: Staphylococcal superantigen-like protein 3 binds to the Toll-like receptor 2 extracellular domain and inhibits cytokine production induced by Staphylococcus aureus, cell wall component, or lipopeptides in murine macrophages. Infect. Immun. 2012, 80, 2816-2825.
  • Yoon J. W., Lee G. J., Lee S. Y., Park C., Yoo J. H., Park H. M.: Prevalence of genes for enterotoxins, toxic shock syndrome toxin 1 and exfoliative toxin among clinical isolates of Staphylococcus pseudintermedius from canine origin. Vet. Dermatol. 2010, 21, 484-489.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-fbd28d6d-3e48-415d-a1c4-51806f2c7c01
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.