PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | 75 | 2 |

Tytuł artykułu

The use of portable abdominal bioimpedance analyzer Yscope in the assessment of abdominal obesity

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background. Obesity, especially abdominal obesity, is strongly correlated with metabolic and other health risks. Diagnosis and assessment of obesity is important in clinical and routine preventive practice. From the point of view of risk, it is necessary to distinguish not only the area of fat tissue accumulation, but also its type. Objective. The aim of the study was to use a new portable abdominal bioimpedance analyzer, which is intended for the area of abdominal adipose tissue, as part of the evaluation of the body structure of a selected group of volunteers with a focus on the differentiation of subcutaneous and visceral adipose tissue and to assess its usefulness in practice. Material and methods. Body composition was analyzed using a portable abdominal bioimpedance analyzer Yscope (PA-BIA) in combination with a bioimpedance device InBody 970 (high-frequency bioelectrical impedance/HF-BIA). Eighty-three volunteers at the age of 24.92±7.24 years with representation of both sexes participated in the study. Results. Abdominal fat did not differ significantly between the sexes, women reached an average value of 2.01±1.14 kg, men 2.22±1.60 kg (p>0.05). Gender differentiation was manifested in the case of visceral fat (p<0.01) and visceral fat area (p<0.01), the values of which were lower in women than in men. In the case of subcutaneous fat, we found the opposite trend of values in relation to gender, where lower values were achieved by men, but there were no significant differences (p>0.05). Visceral fat was most correlated with abdominal fat (r=0.86) and waist circumference (r=0.85), subcutaneous fat had the strongest positive correlations with abdominal fat (r=0.93) and with body fat mass (r=0.93). Conclusions. PA-BIA in combination with HF-BIA makes it possible to determine the representation of subcutaneous and visceral fat in the abdominal area, which the conventional MFS-BIA method does not allow. When evaluating body composition, significant gender differentiation is confirmed, which is an important factor affecting different health risks related to gender and the representation of different types of fat tissue localized and accumulated in different parts of the body.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

75

Numer

2

Opis fizyczny

p.1-10,fig.,ref.

Twórcy

autor
  • Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia
autor
  • Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovakia
  • Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovakia
autor
  • Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovakia

Bibliografia

  • 1. Abbasi F., Brown B.W. Jr., Lamendola C., Mclaughlin T., Reaven G.M.: Relationship between obesity, insulin resistance, and coronary heart disease risk. J Am Coll Cardiol. 2002;40(5):937-943. doi: 10.1016/s0735-1097(02)02051-x.
  • 2. Arakaki S., Maeshiro T., Hokama A., Hoshino K., Maruwaka S., Higashiarakawa M., et al.: Factors associated with visceral fat accumulation in the general population in Okinawa, Japan. World J Gastrointest Pharmacol Ther. 2016;7(2):261-267. doi:10.4292/wjgpt.v7.i2.261.
  • 3. Bidulescu A., Liu J., Hickson D.A., Hairston K.G., Fox E.R., Arnett D.K., et al.: Gender differences in the association of visceral and subcutaneous adiposity with adiponectin in African Americans: the Jackson Heart Study. BMC Cardiovasc Disord. 2013;22(13):9. doi: 10.1186/1471-2261-13-9.
  • 4. Bjorntorp P., Rosmond R.: Visceral obesity and diabetes. Drugs. 1999;58(Suppl 1):13-18:75-82. doi: 10.2165/00003495-199958001-00005.
  • 5. Brede S., Serfling G., Klement J., Schmid S.M., Lehnert H.: Clinical scenario of the metabolic syndrome. Visc Med. 2016;32(5):336-341. doi: 10.1159/000449028.
  • 6. Carroll J.F., Chiapa A.L., Rodriquez M., Phelps D.R., Cardarelli K.M., Vishwanatha J.K., Bae S., Cardarelli R.: Visceral fat, waist circumference, and BMI: impact of race/ethnicity. Obesity (Silver Spring). 2008;16(3):600- 607. doi: 10.1038/oby.2007.92.
  • 7. Després J.P., Lemieux I., Bergeron J., Pibarot P., Mathieu P., Larose E., Rodés-Cabau J., Bertrand O.F., Poirier P.: Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol. 2008;28(6):1039-1049. doi: 10.1161/ATVBAHA.107.159228.
  • 8. Després J.P., Lemieux I.: Abdominal obesity and metabolic syndrome. Nature 2006;444(7121):881-887. doi: 10.1038/nature05488.
  • 9. Fox C.S., Massaro J.M., Hoffmann U., Pou K.M., Maurovich-Horvat P., Liu C.Y., et al.: Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 2007;116(1):39-48. doi: 10.1161/CIRCULATIONAHA.106.675355.
  • 10. Gammone M.A., D’Orazio N.: Review. Obesity and COVID-19: a detrimental intersection. Front Endocrinol (Lausanne) 2021;12:652639. doi: 10.3389/fendo.2021.652639.
  • 11. Gustafson B.: Adipose tissue, inflammation and atherosclerosis. J Atheroscler Thromb. 2010;17(4):332-41. doi: 10.5551/jat.3939.
  • 12. Hou X., Chen P., Hu G., Wei L., Jiao L., Wang H., et al.: Abdominal subcutaneous fat: a favorable or nonfunctional fat depot for glucose metabolism in Chinese adults? Obesity 2018;26(6):1078-1087. doi:10.1002/oby.22183.
  • 13. Hurt R.T., Ebbert J.O., Croghan I., Nanda S., Schroeder D.R., Teigen L.M., et al.: The comparison of segmental multifrequency bioelectrical impedance analysis and dual-energy X-ray absorptiometry for estimating fat free mass and percentage body fat in an ambulatory population. JPEN J Parenter Enteral Nutr. 2021;45(6):1231-1238. doi: 10.1002/jpen.1994.
  • 14. Chen P., Hou X., Hu G., Wei L., Jiao L., Wang H., et al.: Abdominal subcutaneous adipose tissue: a favorable adipose depot for diabetes? Cardiovasc Diabetol. 2018;17(1):93. doi: 10.1186/s12933-018-0734-8.
  • 15. Ibrahim, M.M.: Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev. 2010;11(1):11-18. doi: 10.1111/j.1467-789X.2009.00623.x.
  • 16. Irlbeck T., Massaro J.M., Bamberg F., O’Donnell C.J., Hoffmann U., Fox C.S.: Association between single-slice measurements of visceral and abdominal subcutaneous adipose tissue with volumetric measurements: the Framingham Heart Study. Int J Obes (Lond) 2010;34(4):781-787. doi: 10.1038/ijo.2009.279.
  • 17. Kaul S., Rothney M.P., Peters D.M., Wacker W.K., Davis C.E., Shapiro M.D., et al.: Dual-energy x-ray absorptiometry for quantification of visceral fat. Obesity (Silver Spring). 2012;20(6):1313-8. doi: 10.1038/oby.2011.393.
  • 18. Kyle U.G., Bosaeus I., De Lorenzo A.D., Deurenberg P., Elia M., Gomez J.M., et al.: Bioelectrical impedance analysis–part I: review of principles and methods. Clin Nutr. 2004;23(5):1226-1243. doi: 10.1016/j. clnu.2004.06.004.
  • 19. Laforest S., Labrecque J., Michaud A., Cianflone K., Tchernof A.: Adipocyte size as a determinant of metabolic disease and adipose tissue dysfunction. Crit Rev Clin Lab Sci. 2015;52(6):301-313. doi:10.3109/10408363.2015.1041582.
  • 20. Lee D.H., Park K.S., Ahn S., Ku E.J., Jung K.Y., Kim Y.J., et al.: Comparison of abdominal visceral adipose tissue area measured by computed tomography with that estimated by bioelectrical impedance analysis method in Korean subjects. Nutrients. 2015;7(12):10513- 10524. doi: 10.3390/nu7125548.
  • 21. Lim S., Meigs J.B.: Links between ectopic fat and vascular disease in humans. Arterioscler Thromb Vasc Biol. 2014;34(9):1820-1826. doi: 10.1161/ATVBAHA.114.303035.
  • 22. Liu J., Fox C.S., Hickson D.A., May W.D., Hairston K.G., Carr J.J., Taylor H.A.: Impact of abdominal visceral and subcutaneous adipose tissue on cardiometabolic risk factors: the Jackson Heart Study. J Clin Endocrinol Metab. 2010;95(12):5419-5426. doi: 10.1210/jc.2010-1378.
  • 23. Mahabadi A.A., Maurovich-Horvat P., Hoffmann U.: Anthropometry of Abdominal Subcutaneous and Visceral Adipose Tissue with Computed Tomography. In: Preedy V.R., editor. Handbook of Anthropometry: Physical Measures of Human Form in Health and Disease. New York, NY: Springer New York, 2012. p.869-880. ISBN 9781441917874.
  • 24. Maurovich-Horvat P., Massaro J., Fox C.S., Moselewski F., O’donnell C.J., Hoffmann U.: Comparison of anthropometric, area- and volume-based assessment of abdominal subcutaneous and visceral adipose tissue volumes using multidetector computed tomography. Int J Obes (Lond). 2007;31(3):500-506. doi: 10.1038/sj.ijo.0803454.
  • 25. Mellis M.G., Oldroyd B., Hind K.: In vivo precision of the GE Lunar iDXA for the measurement of visceral adipose tissue in adults: the influence of body mass index. Eur J Clin Nutr. 2014;68(12):1365-1367. doi: 10.1038/ejcn.2014.213.
  • 26. Mialich M.S., Sicchieri J.M.F., Jordao Junior A.A.: Analysis of body composition: a critical review of the use of bioelectrical impedance analysis. Int J Clin Nutr. 2014;2(1):1-10. doi: 10.12691/ijcn-2-1-1.
  • 27. Michaud A., Drolet R., Noël S., Paris G., Tchernof A.: Visceral fat accumulation is an indicator of adipose tissue macrophage infiltration in women. Metabolism. 2012;61(5):689-698. doi: 10.1016/j.metabol.2011.10.004.
  • 28. Michaud A., Tordjman J., Pelletier M., Liu Y., Laforest S., Noël S., Le Naour G., Bouchard C., Clément K., Tchernof A.: Relevance of omental pericellular adipose tissue collagen in the pathophysiology of human abdominal obesity and related cardiometabolic risk. Int J Obes (Lond). 2016;40(12):1823-1831. doi: 10.1038/ijo.2016.173.
  • 29. Montes-Ibarra M., Orsso C.E., Limon-Miro A.T., Gonzalez M.C., Marzetti E., Landi F., Heymsfield S.B., Barazzoni R., Prado C.M.: Prevalence and clinical implications of abnormal body composition phenotypes in patients with COVID-19: a systematic review. Am J Clin Nutr. 2023;117(6):1288-1305. doi:10.1016/j. ajcnut.2023.04.003.
  • 30. Moonen H.P.F.X., Van Zanten F.J.L., Driessen L., de Smet V., Slingerland-Boot R., Mensink M., van Zanten A.R.H.: Association of bioelectric impedance analysis body composition and Disease severity in COVID-19 hospital ward and ICU patients: the BIAC- 19 study. Clin Nutr. 2021;40(4):2328-2336. doi:10.1016/j.clnu.2020.10.023.
  • 31. Mundi M.S., Karpyak M.V., Koutsari C., Votruba S.B., O’Brien P.C., Jensen M.D.: Body fat distribution, adipocyte size, and metabolic characteristics of nondiabetic adults. J Clin Endocrinol Metab. 2010;95(1):67-73. doi: 10.1210/jc.2009-1353.
  • 32. Neeland I.J., Grundy S.M., Li X., Adams-Huet B., Vega G.L.: Comparison of visceral fat mass measurement by dual-X-ray absorptiometry and magnetic resonance imaging in a multiethnic cohort: the Dallas Heart Study. Nutr Diabetes. 2016;6(7):e221. doi: 10.1038/nutd.2016.28.
  • 33. Neeland I.J., Ross R., Després J.P., Matsuzawa Y., Yamashita S., Shai I., Seidell J., Magni P., Santos R.D., Arsenault B., et al., International Atherosclerosis Society; International Chair on Cardiometabolic Risk Working Group on Visceral Obesity: Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. Lancet Diabetes Endocrinol. 2019;7(9):715-725. doi: 10.1016/S2213-8587(19)30084-1.
  • 34. Oka R., Yagi K., Sakurai M., Nakamura K., Nagasawa S.Y., Miyamoto S., et al.: Impact of visceral adipose tissue and subcutaneous adipose tissue on insulin resistance in middle-aged Japanese. J Atheroscler Thromb. 2012;19(9):814-22. doi: 10.5551/jat.12294.
  • 35. Organ L.W., Bradham G.B., Gore D.T., Lozier S.L.: Segmental bioelectrical impedance analysis: theory and application of a new technique. J Appl Physiol (1985). 1994;77(1):98-112. doi: 10.1152/jappl.1994.77.1.98.
  • 36. Park K.S., Lee D.H., Lee J., Kim Y.J., Jung K.Y., Kim K.M., et al.: Comparison between two methods of bioelectrical impedance analyses for accuracy in measuring abdominal visceral fat area. J Diabetes Complicat. 2016;30(2):343-349. doi: 10.1016/j. jdiacomp.2015.10.014.
  • 37. Pietilainen K.H., Kaye S., Karmi A., Suojanen L., Rissanen A., Virtanen K.A.: Agreement of bioelectrical impedance with dual-energy X-ray absorptiometry and MRI to estimate changes in body fat, skeletal muscle and visceral fat during a 12-month weight loss intervention. Br J Nutr. 2013;109(10):1910-1916. doi: 10.1017/S0007114512003698.
  • 38. Piche M.E., Tchernof A., Despres J.P.: Obesity phenotypes, diabetes, and cardiovascular diseases. Circ Res. 2020;126(11):1477-1500. doi: 10.1161/CIRCRESAHA.120.316101.
  • 39. Ryo M., Maeda K., Onda T., Katashima M., Okumiya A., Nishida M., et al.: A newsimple method for the measurement of visceral fat accumulation by bioelectrical impedance. Diabetes Care. 2005;28(2):451-453. doi: 10.2337/diacare.28.2.451.
  • 40. Saklayen M.G.: The global epidemic of the metabolic syndrome. Curr Hypertens Rep. 2018;20(2):12. doi: 10.1007/s11906-018-0812-z.
  • 41. Shuster A., Patlas M., Pinthus J.H., Mourtzakis M.: The clinical importance of visceral adiposity: a critical review of methods for visceral adipose tissue analysis. Br J Radiol. 2012;85(1009):1-10. doi: 10.1259/bjr/38447238.
  • 42. Scharfetter H., Schlager T., Stollberger R., Felsberger R., Hutten H., Hinghofer-Szalkay H.: Assessing abdominal fatness with local bioimpedance analysis: basics and experimental findings. Int J Obes Relat Metab Disord. 2001;25(4):502-511. doi:10.1038/sj.ijo.0801556
  • 43. Snell-Bergeon J.K., Hokanson J.E., Kinney G.L., Dabelea D., Ehrlich J., Eckel R.H., Ogden L., Rewers M.: Measurement of abdominal fat by CT compared to waist circumference and BMI in explaining the presence of coronary calcium. Int J Obes Relat Metab Disord. 2004;28(12):1594-1599. doi: 10.1038/sj.ijo.0802796.
  • 44. Speliotes E.K., Massaro J.M., Hoffmann U., Foster M.C., Sahani D.V., Hirschhorn J.N., O’Donnell C.J., Fox C.S.: Liver fat is reproducibly measured using computed tomography in the Framingham Heart Study. J Gastroenterol Hepatol. 2008;23(6):894-899. doi: 10.1111/j.1440-1746.2008.05420.x.
  • 45. Thalmann S., Meier C.A.: Local adipose tissue depots as cardiovascular risk factors. Cardiovasc Res. 2007;75(4):690-701. doi: 10.1016/j.cardiores.2007.03.008.
  • 46. Tchernof A., Després J.P.: Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93(1):359-404. doi: 10.1152/physrev.00033.2011.
  • 47. van Wijk D.F., Boekholdt S.M., Arsenault B.J., Ahmadi-Abhari S., Wareham N.J., Stroes E.S., et al.: C-reactive protein identifies low-risk metabolically healthy obese persons: the European Prospective Investigation of Cancer-Norfolk Prospective Population study. J Am Heart Assoc. 2016;5(6):e002823. doi: 10.1161/JAHA.115.002823.
  • 48. Yang X., Smith U.: Adipose tissue distribution and risk of metabolic disease: does thiazolidinedioneinduced adipose tissue redistribution provide a clue to the answer? Diabetologia. 2007;50(6):1127-1139. doi:10.1007/s00125-007-0640-1.
  • 49. Yi Y., Baek J.Y., Lee E., Jung H.W., Jang I.Y.: A comparative study of highfrequency bioelectrical impedance analysis and dual-energy X-ray absorptiometry for estimating body composition. Life (Basel) 2022;12(7):994. doi: 10.3390/life12070994.
  • 50. Yoon J.W., Sohn M., Moon J.H., Lim S.: Accuracy of Y-scope, a newly developed portable abdominal impedance analyzer, for the assessment of abdominal visceral fat area. Front. Nutr. 2022;9:950747. doi: 10.3389/fnut.2022.950747.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-fa5c3f9b-0bab-48c6-ad08-a1dd4880bfc7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.