PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 08 |

Tytuł artykułu

Physiological and biochemical alterations on maize leaves infected by Stenocarpella macrospora

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study aimed to analyze the antioxidant system responses and photosynthetic performance of maize cultivars (ECVSCS155 and HIB 32R48H) infected by Stenocarpella macrospora. The activities of some antioxidant enzymes and metabolites and the concentration of reactive oxygen species in maize leaves as well as chlorophyll a fluorescence imaging parameters were assessed. For both cultivars, the enzymatic and non-enzymatic components of the antioxidant system were dramatically altered in the infected leaves. As the disease symptoms became more noticeable, enzyme activities (e.g., peroxidases and catalases) and the concentration of ascorbate and glutathione decreased accordingly. The concentrations of hydrogen peroxide and malondialdehyde equivalents increased, thereby contributing to the intensification of lipid peroxidation upon damage to cell membranes caused by fungal infection. Decreases in maximum fluorescence, maximum PSII quantum efficiency, effective PSII quantum yield and quantum yield of regulated energy dissipation coupled with increases in initial fluorescence and quantum yield of non-regulated energy dissipation were directly related to the progressive loss of photosynthetic activity coupled with the development of oxidative stress during the S. macrospora infection process.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

08

Opis fizyczny

fig.,ref.

Twórcy

  • Laboratorio de Fitopatologia, Barrio Santa Helena, Universidad del Tolima, Parte Alta A. A. 546, Ibague, Tolima, Colombia
  • Departamento de Fitopatologia, Laboratorio da Interacao Planta-Patogeno, Universidade Federal de Vicosa, Vicosa, Minas Gerais State, Zip Code 36.570-900, Brazil
  • Departamento de Fitopatologia, Laboratorio da Interacao Planta-Patogeno, Universidade Federal de Vicosa, Vicosa, Minas Gerais State, Zip Code 36.570-900, Brazil

Bibliografia

  • Abdel-Fattah GM, Al-Amri SM (2012) Induced systemic resistance in tomato plants against Fusarium oxysporum f. sp. lycopersici by different kinds of compost. Afr J Biotechnol 11:12454–12463. doi:10.5897/AJB12.924
  • Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113:548–555
  • Anderson JV, Davis DG (2004) Abiotic stress alters transcript profiles and activity of glutathione-S-transferase, glutathione peroxidase, and glutathione reductase in Euphorbia esula. Physiol Plant 120:421–433. doi:10.1111/j.0031-9317.2004.00249.x
  • Anderson B, White DG (1987) Fungi associated with corn stalks in Illinois in 1982 and 1983. Plant Dis 71:135–137
  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. doi:10.1146/annurev.arplant.55.031903.141701
  • Aro EM, Virgin I, Anderson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134. doi:10.1016/0005-2728(93)90134-2
  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci India 82:1227–1238
  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639. doi:10.1146/annurev.arplant.50.1.601
  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396. doi:10.1104/pp.106.082040
  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis In Vivo. Annu Rev Plant Biol 59:89–113. doi:10.1146/annurev.arplant.59.032607.092759
  • Baker NR, Oxborough K, Lawson T, Morison JIL (2001) High resolution imaging of photosynthetic activities of tissues, cells and chloroplast in leaves. J Exp Bot 52:615–621. doi:10.1093/ jexbot/52.356.615
  • Bampi D, Casa RT, Bogo A, Sangoi L, Sachs C, Bolzan JM, Piletti G (2012) Fungicide performance on the control of macrospora leaf spot in corn. Summa Phytopathol 38:319–322. doi:10.1590/S0100-54052012000400008
  • Bartoli CG, Pastori GM, Foyer CH (2000) Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV. Plant Physiol 123:335–343. doi:10.1104/pp.123.1.335
  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287. doi:10.1016/0003-2697(71)90370-8
  • Behr M, Humbeck K, Hause G, Deising HB, Wirsel SGR (2010) The hemibiotroph Colletotrichum graminicola locally induces photosynthetically active green islands but globally accelerates senescence on aging maize leaves. Mol Plant Microbe Interact 23:879–892. doi:10.1094/MPMI-23-7-0879
  • Bensch MJ, Van Staden J, Rijkenberg FHJ (1992) Time and site inoculation of maize for optimum infection of ears by Stenocarpella maydis. J Phytopathol 136:265–269. doi:10.1111/j.1439-0434.1992.tb01308.x
  • Berger S, Papadopoulos M, Schreiber U, Kaiser W, Roitsch T (2004) Complex regulation of genes expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiol Plantarum 122:419–428. doi:10.1111/j.1399-3054.2004.00433.x
  • Bermúdez-Cardona MB, Wordell Filho JA, Rodrigues FA (2015) Leaf gas exchange and chlorophyll a fluorescence in maize leaves infected with Stenocarpella macrospora. Phytopathology 105:26–34. doi:10.1094/PHYTO-04-14-0096-R
  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damaged and oxygen deprivation stress: a review. Ann Bot 91:179–194. doi:10.1093/aob/mcf118
  • Bolwell GP, Wojtaszek P (1997) Mechanisms for the generation of reactive oxygen species in plant defence—a broad perspective. Physiol Mol Plant Pathol 51:347–366. doi:10.1006/pmpp.1997.0129
  • Bowler C, Van Montagu M, Inzé D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116. doi:10.1146/annurev.pp.43.060192.000503
  • Bradford MN (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3
  • Burling K, Hunsche M, Noga G (2010) Quantum yield of nonregulated energy dissipation in PSII (Y(NO)) for early detection of leaf rust (Puccinia triticina) infection in susceptible and resistant wheat (Triticum aestivum L.) cultivars. Precis Agric 11:703–716. doi:10.1007/s11119-010-9194-1
  • Cakmak L, Horst WJ (1991) Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxide activity in root tip of soybean (Glycine max). Plant Physiol 83:463–468. doi:10.1111/j.1399-3054.1991.tb00121.x
  • Carlberg C, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:488–495
  • Casa RT, Reis EM, Zambolim L (2003) Decomposic¸ão dos restos culturais do milho e sobrevivência saprofítica de Stenocarpella macrospora e Stenocarpella maydis. Fitopatol Bras 28:355–361. doi:10.1590/S0100-41582003000400002
  • Casa RT, Reis EM, Zambolim L (2004) Dispersão vertical e horizontal de conídios de Stenocarpella macrospora e Stenocarpella maydis. Fitopatol Bras 29:141–147. doi:10.1590/S0100-41582004000200004
  • Casa RT, Reis EM, Zambolim L (2006) Doenc¸as do milho causadas por fungos do gênero Stenocarpella. Fitopatol Bras 31:427–439. doi:10.1590/S0100-41582006000500001
  • Chance B, Maehley AC (1955) Assay of catalases and peroxidases. Methods Enzymol 2:764–775. doi:10.1002/9780470110171.ch14
  • Dai K, Nagai M, Sasaki H, Nakamura H, Tachechi K, Warabi M (1987) Detection of Diplodia maydis (Berkeley) Saccardo from imported corn seed. Res Bull Plant Protect Serv 23:1–6
  • Dixon DP, Cummins I, Cole DJ, Edwards R (1998) Glutathionemediated detoxification systems in plants. Curr Opin Plant Biol 1:258–266. http://biomednet.com/elecref/1369526600100258
  • Edwards R, Dixon DP, Walbot V (2000) Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci 5:193–198. doi:10.1016/S1360-1385(00)01601-0
  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25. doi:10.1007/BF00386001
  • Foyer CH, Noctor G (2000) Oxygen processing in photosynthesis: regulation and signaling. New Phytol 146:359–388. doi:10.1046/j.1469-8137.2000.00667.x
  • García-Limones C, Hervás A, Navas-Cortés JA, Jiménez-Díaz RM, Tena M (2002) Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f.sp. ciceris. Physiol Mol Plant Pathol 61:325–337. doi:10.1006/pmpp.2003.0445
  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212. doi:10.1016/0003-2697(80)90139-6
  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139
  • Hamid K, Strange RN (2000) Phytotoxicity of solanapyrones A and B produced by the chickpea pathogen Ascochyta rabiei (Pass.) Labr. and the apparent metabolism of solanapyrone A by chickpea tissues. Physiol Mol Plant Pathol 56:235–244. doi:10.1006/pmpp.2000.0272
  • Havir EA, McHale NA (1987) Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol 84:450–455. doi:0032-0889/87/84/0450/06/$01.00/0
  • Heller J, Tudzynski P (2011) Reactive oxygen species in phytopathogenic fungi: signaling, development, and disease. Annu Rev Phytopathol 49:369–390. doi:10.1146/annurev-phyto-072910-095355
  • Hossain Z, Nouri MZ, Komatsu S (2012) Plant cell organelle proteomics in response to abiotic stress. J Proteome Res 11:37–48. doi:10.1021/pr200863r
  • Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418. doi:10.1146/annurev.micro.57.030502.090938
  • Kar M, Mishra D (1976) Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol 57:315–319. doi:10.1104/pp.57.2.315
  • Kramer DM, Giles J, Olavi K, Gerald EE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218. doi:10.1023/B:PRES.0000015391.99477.0d
  • Kuo MC, Kao CH (2003) Aluminium effects on lipid peroxidation and antioxidative enzyme activity in rice leaves. Biol Planta 46:149–152. doi:10.1590/S1677-04202012000200004
  • Latterell FM, Rossi AE (1983) Stenocarpella macrospora (= Diplodia macrospora) and S. maydis (= D. maydis) compared as pathogens of corn. Plant Dis 67:725–729. doi:10.1094/PD-67-725
  • Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Bioph Res Co 71:952–958. doi:10.1016/0006-291X(76)90747-6
  • Lima ALS, DaMatta FM, Pinheiro HA, Totola MR, Loureiro ME (2002) Photochemical response and oxidative stress in two clones of Coffea canephora under water deficit conditions. Environ Experim Bot 47:239–247. doi:10.1016/S0098-8472(01)00130-7
  • Logan BA, Koryeyev D, Hardison J, Holaday S (2006) The role of antioxidant enzymes in photoprotection. Photosynth Res 88:119–132. doi:10.1007/s11120-006-9043-2
  • Marrs KL (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158. doi:10.1146/annurev.arplant.47.1.127
  • Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci 4:130–135. doi:10.1016/S1360-1385(99)01387-4
  • Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61:4197–4220. doi:10.1093/jxb/erq282
  • Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591. doi:10.1146/annurev.arplant.52.1.561
  • Muimba KA, Bergstrom GC (2011) Reduced anthracnose stalk rot in resistant maize is associated with restricted development of Colletotrichum graminicola in pith tissues. J Phytopathol 159:329–341. doi:10.1111/j.1439-0434.2010.01766.x
  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:876–880
  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53:1283–1304. doi:10.1093/jexbot/53.372.1283
  • Olatinwo R, Cardwell K, Menkin A, Deadman M, Julian A (1999) Inheritance of resistance to Stenocarpella macrospora (Earle) ear rot of maize in the mid-altitude zone of Nigeria. Eur J Plant Pathol 105:535–543. doi:10.1023/A:1008734815796
  • Orendi G, Zimmermann P, Baar C, Zentgraf U (2001) Loss of stressinduced expression of catalase3 during leaf senescence in Arabidopsis thaliana is restricted to oxidative stress. Plant Sci 161:301–314. doi:10.1016/S0168-9452(01)00409-5
  • Oxborough K (2004) Imaging of cholorophyll a fluorescence: theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance. J Exp Bot 55:1195–1205. doi:10.1093/jxb/erh145
  • Oxborough K, Baker NR (1997) Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and nonphotochemical components-calculation of qP and F'v/F'm without measuring F'0 . Photosynth Res 54:135–142. doi:10.1023/A: 1005936823310
  • Plazek A, Rapacz M, Hura K (2004) Relationship between quantum efficiency of PSII and cold-induced plant resistance to fungal pathogens. Acta Physiol Plant 26:141–148. doi:10.1007/s11738-004-0003-1
  • Radwan DEM, Fayez KA, Mahmoud SY, Lu G (2010) Modification of antioxidant activity and protein composition of bean leaf due to Bean yellow mosaic virus infection and salicylic acid treatments. Acta Physiol Plant 32:891–904. doi:10.1007/s11738-010-0477-y
  • Rolfe SA, Scholes JD (2010) Chlorophyll fluorescence imaging of plant-pathogen interaction. Protoplasma 247:163–175. doi:10.1007/s00709-010-0203-z
  • Scholes JD, Rolfe SA (2009) Chlorophyll fluorescence imaging as tool for understanding the impact of fungal diseases on plant performance: a phenomics perspective. Funct Plant Biol 36:880–892. doi:10.1071/FP09145
  • Sedlárová M, Luhová L, Patrivalsky M, Lebeda A (2007) Localisation and metabolism of reactive oxygen species during Bremia lactucae pathogenesis in Lactuca sativa and wild Lactuca spp. Plant Physiol Bioch 45:607–616. doi:10.1016/j.plaphy.2007.05. 010
  • Shaner G, Finney RE (1977) The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology 67:1051–1056. doi:10.1094/Phyto-67-1051
  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26. doi:10.1155/2012/217037
  • Shetty NP, Mehrabi R, Lutken H, Haldrup A, Kema GHJ, Collinge DB, Jorgensen HJL (2007) Role of hydrogen peroxide during the interaction between the hemibiotrophic fungal pathogen Septoria tritici and wheat. New Phytol 174:637–647. doi:10.1111/j.1469-8137.2007.02026.x
  • Shetty NP, Jorgensen HJL, Jensen JD, Collinge DB, Shetty HS (2008) Roles of reactive oxygen species in interactions between plants and pathogens. Eur J Plant Pathol 121:267–280. doi:10.1007/s10658-008-9302-5
  • Vale FXR, Fernandes Filho EI, Liberato JR (2003) A software plant disease severity assessment. In: 8th International Congress of Plant Pathology. Vol 2, Christchurch, New Zealand, pp 105
  • White DG (1999) Compendium of corn diseases, 3rd edn. The American Phytopathological Society, Saint Paul
  • Wilhelm C, Selmar D (2011) Energy dissipation is an essential mechanism to sustain the viability of plants: the physiological limits of improved photosynthesis. J Plant Physiol 168:79–87. doi:10.1016/j.jplph.2010.07.012

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f9f413ca-2f38-4844-9e7f-acb4a5fb3f15
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.