PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 15 | 4 |

Tytuł artykułu

Stability of anisotropic cylindrical shells in three-dimensional state under axial compression

Treść / Zawartość

Warianty tytułu

PL
Stateczność osiowo ściskanych trójwymiarowych anizotropowych powłok cylindrycznych

Języki publikacji

EN

Abstrakty

EN
The paper presents an approach to the solution of a problem of stability of cylindrical anisotropic shells under the influence of axial compression. The approach is based on the application of the Bubnov-Galerkin procedure, taking into account boundary conditions on surfaces and end edges of cylindrical shells as well as on the application of a numerical method of discrete orthogonalization. It has been solved a problem of stability of cylindrical shells made of a material characterized by one plane of elastic symmetry. It has been investigated a dependence of values of critical stresses on the rotation angle of main directions of elasticity properties in respect to the main curvatures of the cylindrical shell. The results are presented in form of graphs and provided in the tables. Their analysis also has been carried out.
PL
Przedstawiono próbę do rozwiązania problemu stateczności anizotropowych powłok cylindrycznych pod naciskiem osiowym, które opiera się na procedurze Bubnova-Galerkina przy wykorzystaniu warunków brzegowych na powierzchni i na krawędzi powłok cylindrycznych oraz na metodzie numerycznej ortogonalizacji dyskretnej. Rozwiązano problem stateczności powłok cylindrycznych wykonanych z materiału charakteryzującego się jedną płaszczyzną symetrii. Badano zależność obciążenia krytycznego od kąta obrotu głównych kierunków sprężystości. Wyniki obliczeń przedstawiono na wykresach i tabelach, ponadto przeprowadzono ich analizę.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

15

Numer

4

Opis fizyczny

p.169-183,fig.,ref.

Twórcy

autor
  • Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences - SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
autor
  • S.P. Timoshenko Institute of Mechanics, NAS of Ukraine, Kyiv, Ukraine
autor
  • National University of Water Management and Nature Resources Use, Rivne, Ukraine

Bibliografia

  • Ambartsumyan, S.A. (1974). General theory of anisotropic shells. Nauka, Moskwa.
  • Bazhenov, V.A., Semenyuk, N.P., Trach, V.M. (2010). Nonlinear deformation, stability and postbuckling behavior of anisotropic shells. Monograph. Karavela, Kyiv.
  • Bespalova, E.I. Kitaygorodskyi, A.B. (1999). Fluctuations of anisotropic shells. In: Mechanics of composites. Vol. 9. Dynamics of elements of structures. Ed. V.D. Kubenko. A.C.K., Kyiv.
  • Castro, S.G., Mittelstedt, C., Monteiro, F., Arbelo, M., Degenhardt, R., Ziegmann, G. (2015). Evaluation of non-linear buckling loads of geometrically imperfect composite cylinder and cones with the Ritz method. Composite Structures, 122, 284–299.
  • Grygorenko, J.M., Kryukov, N.N. (1988) Numerical decisions of tasks of a statics of flexible layered shells with variable parameters. Naukova Dumka, Kyiv.
  • Grygorenko, J.M., Vasylenko, A.T., Pankratova, N.D. (1991) Tasks of the theory of elasticity of non-uniform bodies. Naukova Dumka, Kyiv.
  • Guz’, A.N. (1986). Bases of the three-dimensional theory of stability of deformable bodies. Vischa Shkola, Kyiv.
  • Guz’, A.N., Babich, I.Y. (1985). Spatial tasks of the theory of elasticity and plasticity. Vol. 4. Three-dimensional theory of stability of deformable bodies. Naukova Dumka, Kyiv.
  • Karmyshyn, A.V., L’askovets, V.A., M’achenkov, V.I. (1975). Statics and dynamics of thin-walled shells structures. Mashinostroenie, Moskwa.
  • Kolakowski, Z., Teter, A. (2005). Static interactive buckling of functionally graded columns with closed cross-sections subjected to axial compression. Composite Structures, 123, 257–262.
  • Korolyev, V.I. (1965). Layered anisotropic plates and shells from the reinforced plastic. Mashinostroenie, Moskwa.
  • Lekhnytskyy, S.G. (1977). Theory of elasticity of an anisotropic body. Nauka, Moskwa.
  • Muc, A., Pastuszak, P.O. (2015). Remarks on buckling analysis plates and shells//3 int. Conference on Buckling and Postbuckling Behavior of Composite Laminated Shell Structures with DES1COS Workshop. 25–27 March 2015, Braunschweig, Germany.
  • Mykyshcheva, V.I. (1968). Optimum winding of shells from fibreglass working for stability under the external pressure or axial compression. Mechanics of polymers, 5, 864–875.
  • Mytkevich, A.B., Kul’kov, A.A. (2006). Optimum design and technology of a shaping of the toroid-shape covers from composite materials. Mechanics of composite materials, 42, 2, 147–164.
  • Novozhylov, V.V. (1948). Bases of the nonlinear theory of elasticity. OGIZ, Moskwa.
  • Reddy, J.N. (2015). Refined theories and finite element models for the analysis of laminated compo site structures: An overview//3 Int. Conference on Buckling and Postbuckling Behavior of Composite Laminated Shell Structures with DESICOS Workshop. 25–27 March 2015, Braunschweid, Germany.
  • Richards, R.B., Teters, G.A. (1974). Stability of shells from composite materials. Institute of Mechanics of Polymers, Academy of Sciences of the LatvianSSR. Zinatne, Riga.
  • Semenyuk, N.P., Trach, V.M. (2004). To a question of the accounting of turns around a normal in nonlinear theories of shells. International Applied Mechanics, 40, 6, 117–124.
  • Semenyuk, N.P., Trach, V.M. (2006). Stability of axially compressed cylindrical shells made of reinforced materials with specific fiber orientation within each layer. International Applied Mechanics, 42, 3, 80–88.
  • Trach, V.M. (2006). Stability of cylindrical shells with one plane of elastic symmetry under axial compression and torsion. International Applied Mechanics, 42, 8, 115–121.
  • Trach, V.M. (2007). Stability of conical shells made of composites with one plane of elastic symmetry. International Applied Mechanics, 43, 6, 93–101.
  • Trach, V.M. (2008). Stability of composite shells of revolution. International Applied Mechanic, 44, 3, 109–124.
  • Trach, V., Choruziy, M. (2015). Tha stability of average thickness anisotropic cylindrical shells under axial compression. Acta Scientiarum Polonorum, Architectura, 14 (3), 21–34.
  • Trach, V. M., Podvornyi, A.V. (2004). On stability of from shells materials with one plane of elastic symmetry. Int. Appl. Mech., 40, 5, 114–121.
  • Vanin, G.A., Semenyuk, N.P. (1987). Stability of shells from composite materials with imperfections. Naukova Dumka, Kyiv.
  • Volmir, A.S. (1967). Stability of deformable systems. Nauka, Moskwa.
  • Weaver, P.M. (2003). The effect of extension / twist anisotropy on compression buckling in cylindrical shells. Composites, B. 34, 251–260.
  • Weaver, P. (2015). Imperfection-insensitive shells using variable stiffness composites. 3 Int. Conference on Buckling and Postbuckling Behavior of Composite Laminated Shell Structures with DESICOS Workshop. 25–27 March 2015, Braunschweig, Germany.
  • Weaver, P.M., Drisen, I.R., Roberts, P. (2002). Anisotropic effect in the compression buckling of laminated composite cylindrical shells. Composites Science and Technology, 62, 1, 91–105.
  • Wong, K.F.W., Weaver, P.M. (2005). Approximate Solution for the Compression Buckling of Fully Anisotropic Cylindrical Shells. A I AA Journal, 43, 12, 2639–2645.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f9677e17-9d25-4766-bfaa-7d6ee181bf60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.