PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 06 |

Tytuł artykułu

Isolation and characterization of BnMKK1 responsive to multiple stresses and affecting plant architecture in tobacco

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The mitogen-activated protein kinase kinases (MKK) represent a small gene family that is located at the center of the MAPK cascade and play an important role in responses to biotic and abiotic stresses and in plant growth and development. Here, we report the cloning of an MKK gene from Brassica napus, BnMKK1 (GenBank Accession No. HQ916282), by RT-PCR. The BnMKK1 cDNA is 1,447 bp in length with an open reading frame of 1,092 bp. The gene encodes a putative MKK protein that contains a conserved motif S/TxxxxxS/T (where x represents any amino acid) and a MPK docking domain in its N-terminal extension. The orthologues of the BnMKK1 protein are highly conserved among mosses, ferns, dicotyledons and monocotyledons. Southern hybridization revealed the presence of more than two copies of the BnMKK1 homologues in the genome of B. napus. Quantitative reverse transcription–polymerase chain reaction analyses showed that the BnMKK1 transcripts accumulated in response to cold, ABA (abscisic acid) and MeJA (methyl jasmonate) but declined in response to mannitol, NaCl, H₂O₂, and SA (salicylic acid). The inhibitors of MAPK activation, PD98059 and U0126, did not inhibit BnMKK1 transcription. BnMKK1 transgenic tobacco plants grew slower and showed significantly delayed flower times compared to the wild type. Their root development was insensitive to treatment with 100 mM IAA (indole-3-acetic acid). The detached leaves from the transgenic BnMKK1 tobacco plants strengthened the inhibition to bacterial development at later growth stages. The overexpression of BnMKK1 leads to rapid water loss and enhanced sensitivities to drought stress in transgenic tobacco plants. These results show that BnMKK1 plays an important role in the response of plants to pathogenic bacteria and drought stress.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

06

Opis fizyczny

p.1313-1324,fig.,ref.

Twórcy

autor
  • Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 201106 Shanghai, China
autor
  • Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, 200030 Shanghai, China
autor
  • Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 201106 Shanghai, China
autor
  • Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 201106 Shanghai, China
autor
  • Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 201106 Shanghai, China
autor
  • Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 201106 Shanghai, China
autor
  • Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 201106 Shanghai, China
autor
  • Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, 200030 Shanghai, China
autor
  • Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 201106 Shanghai, China

Bibliografia

  • Altschul SF, Gertz EM, Agarwala R, Schaffer AA, Yu YK (2009) PSI-BLAST pseudocounts and the minimum description length principle. Nucleic Acids Res 37:815–824
  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201
  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983
  • Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S (2002) Extensive feature detection of N-terminal protein sorting signals. Bioinformatics 18:298–305
  • Brader G, Djamei A, Teige M, Palva ET, Hirt H (2007) The MAP kinase kinase MKK2 affects disease resistance in Arabidopsis. Mol Plant Microbe Interact 20:589–596
  • Calderini O, Glab N, Bergounioux C, Heberle-Bors E, Wilson C (2001) A novel tobacco mitogen-activated protein (MAP) kinase kinase, NtMEK1, activates the cell cycle-regulated p43Ntf6 MAP kinase. J Biol Chem 276:18139–18145
  • Dai Y, Wang H, Li B, Huang J, Liu X, Zhou Y, Mou Z, Li J (2006) Increased expression of MAP KINASE KINASE7 causes deficiency in polar auxin transport and leads to plant architectural abnormality in Arabidopsis. Plant Cell 18:308–320
  • Desikan R, Hancock JT, Ichimura K, Shinozaki K, Neill SJ (2001) Harpin induces activation of the arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol 126: 1579–1587
  • Doczi R, Brader G, Pettko-Szandtner A, Rajh I, Djamei A, Pitzschke A, Teige M, Hirt H (2007) The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling. Plant Cell 19:3266–3279
  • Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, van Dyk DE, Pitts WJ, Earl RA, Hobbs F, Copeland RA, Magolda RL, Scherle PA, Trzaskos JM (1998) Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 273:18623–18632
  • Fischmann TO, Smith CK, Mayhood TW, Myers JE, Reichert P, Mannarino A, Carr D, Zhu H, Wong J, Yang RS, Le HV, Madison VS (2009) Crystal structures of MEK1 binary and ternary complexes with nucleotides and inhibitors. Biochemistry 48:2661–2674
  • Gao M, Liu J, Bi D, Zhang Z, Cheng F, Chen S, Zhang Y (2008) MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants. Cell Res 18:1190–1198
  • Garrington TP, Johnson GL (1999) Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 11:211–218
  • Ge TM, Yu YJ (1994) Studies on nutritional requirements of regenerated plantlets in wheat. J Huazhong Agri Univ (in Chinese) 13:344–348
  • Gomi K, Ogawa D, Katou S, Kamada H, Nakajima N, Saji H, Soyano T, Sasabe M, Machida Y, Mitsuhara I, Ohashi Y, Seo S (2005) A mitogen-activated protein kinase NtMPK4 activated by SIPKK is required for jasmonic acid signaling and involved in ozone tolerance via stomatal movement in tobacco. Plant Cell Physiol 46:1902–1914
  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723
  • Hamel LP, Nicole MC, Sritubtim S, Morency MJ, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Klessig D, Lee J, Martin G, Mundy J, Ohashi Y, Scheel D, Sheen J, Xing T, Zhang S, Seguin A, Ellis BE (2006) Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci 11:192–198
  • Hoekema A, Roelvink PW, Hooykaas PJ, Schilperoort RA (1984) Delivery of T-DNA from the Agrobacterium tumefaciens chromosome into plant cells. EMBO J 3:2485–2490
  • Hua ZM, Yang X, Fromm ME (2006) Activation of the NaCl- and drought-induced RD29A and RD29B promoters by constitutively active Arabidopsis MAPKK or MAPK proteins. Plant Cell Environ 29:1761–1770
  • Huang Y, Li H, Gupta R, Morris PC, Luan S, Kieber JJ (2000) ATMPK4, an Arabidopsis homolog of mitogen-activated protein kinase, is activated in vitro by AtMEK1 through threonine phosphorylation. Plant Physiol 122:1301–1310
  • Ichimura K, Tena G, Henry Y, Zhang Z, Hirt H, Wilson C, Morris P, Mundy J, Innes R, Ecker J, Scheel D, Klessig DF, Machida Y, Mundy J, Ohashi J, Walker JC (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301–308
  • Jiang C, Chen Y (1995) A method of isolation genomic DNA from Brassica. Chin J Oil Crop Sci 17:34–36 (In Chinese)
  • Jonak C, Okresz L, Bogre L, Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol 5:415–424
  • Liang W, Yang B, Yu BJ, Zhou Z, Li C, Jia M, Sun Y, Zhang Y, Wu F, Zhang H, Wang B, Deyholos MK, Jiang YQ (2013) Identification and analysis of MKK and MPK gene families in canola (Brassica napus L.). BMC Genom 14:392
  • Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method. Methods 25:402–408
  • Melikant B, Giuliani C, Halbmayer-Watzina S, Limmongkon A, Heberle-Bors E, Wilson C (2004) The Arabidopsis thaliana MEK AtMKK6 activates the MAP kinase AtMPK13. FEBS Lett 576:5–8
  • Meszaros T, Helfer A, Hatzimasoura E, Magyar Z, Serazetdinova L, Rios G, Bardoczy V, Teige M, Koncz C, Peck S, Bogre L (2006) The Arabidopsis MAP kinase kinase MKK1 participates in defence responses to the bacterial elicitor flagellin. Plant J 48:485–498
  • Nicole MC, Hamel LP, Morency MJ, Beaudoin N, Ellis BE, Seguin A (2006) MAP-ping genomic organization and organ-specific expression profiles of poplar MAP kinases and MAP kinase kinases. BMC Genom 7:223
  • Popescu SC, Popescu GV, Bachan S, Zhang Z, Gerstein M, Snyder M, Dinesh-Kumar SP (2009) MAPK target networks in A. thaliana revealed using functional protein microarrays. Genes Dev 23:80–92
  • Qiu JL, Zhou L, Yun BW, Nielsen HB, Fiil BK, Petersen K, Mackinlay J, Loake GJ, Mundy J, Morris PC (2008) Arabidopsis mitogen-activated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1. Plant Physiol 148:212–222
  • Reyna NS, Yang Y (2006) Molecular analysis of the rice MAP kinase gene family in relation to Magnaporthe grisea infection. Mol Plant Microbe Interact 19:530–540
  • Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2007) The mitogen-activated protein kinase cascade MKK3–MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell 19:805–818
  • Takahashi Y, Soyano T, Kosetsu K, Sasabe M, Machida Y (2010) HINKEL kinesin, ANP MAPKKKs and MKK6/ANQ MAPKK, which phosphorylates and activates MPK4 MAPK, constitute a pathway that is required for cytokinesis in A. thaliana. Plant Cell Physiol 51:1766–1776
  • Virk N, Liu B, Zhang H, Li X, Zhang Y, Li D, Song F (2013) Tomato SlMPK4 is required for resistance against Botrytis cinerea and tolerance to drought stress. Acta Physiol Plant 35:1211–1221
  • Xing Y, Jia W, Zhang J (2008) AtMKK1 mediates ABA-induced CAT1 expression and H₂O₂ production via AtMPK6-coupled signaling in Arabidopsis. Plant J 54:440–451
  • Xu J, Li Y, Wang Y, Liu H, Lei L, Yang H, Liu G, Ren D (2008) Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J Biol Chem 283:26996–27006
  • Yang KY, Liu Y, Zhang S (2001) Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci USA 98:741–746
  • Yu SW, Tang KJ (2004) MAP kinase cascades responding to environmental stress in plants. Acta Bot Sinica 46:127–136
  • Zhang S, Klessig DF (2001) MAPK cascades in plant defense signaling. Trends Plant Sci 6:520–527
  • Zhang X, Dai Y, Xiong Y, DeFraia C, Li J, Dong X, Mou Z (2007) Overexpression of Arabidopsis MAP kinase kinase 7 leads to activation of plant basal and systemic acquired resistance. Plant J 52:1066–1079
  • Zhou C, Cai Z, Guo Y, Gan S (2009) An arabidopsis mitogen-activated protein kinase cascade, MKK9–MPK6, plays a role in leaf senescence. Plant Physiol 150:167–177

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f7e683a6-3043-4f4c-9583-bdb3a09a67ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.