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Abstract
Introduction and objectives. It is difficult to identify the environmental factors which together influence the occurrence 
of congenital malformations. It could be helpful to define the geographic location of the areas with an increased prevalence 
of such malformations. The aim of this study is to define if there are regions in Poland where the prevalence of isolated cleft 
lip, with or without a cleft palate (CL±P), is increased, and to present a method for searching for such areas.  
Materials and methods. The analysis included the whole area of Poland monitored in 2007–2008 by the Polish Register 
of Congenital Malformations (PRCM). The area was divided into 3,045 census regions. The number of children with CL±P 
in those years was 514, and the size of the reference population (live births) was 802,372. Two methods were used for the 
detection of clusters with an increased prevalence of isolated CL±P: the LISA analysis and Kulldorff’s scan statistic, and 
described in detail.  
Results. The prevalence of isolated CL±P and the smoothed prevalence were calculated for every community. The results of 
the LISA and Kulldorff’s analyses were consistent. Both methods located the sites with an increased prevalence of isolated 
CL±P. The lack of statistical significance of clusters indicated by Kulldorff’s statistic, and the significance of clusters detected 
with the use of the LISA method, indicated the existence of clusters with an only slightly increased prevalence of isolated 
CL±P.  
Conclusions. The study shows the usefulness of the LISA and Kulldorff’s spatial analyses in epidemiological studies, including 
the etiology of congenital malformations. Because the two methods work in different ways, good results can be obtained 
when they are used together.
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INTRODUCTION

CL±P is a defect conditioned by several factors, and a 
combination of genetic and environmental factors comprises 
the etiology of that defect. A number of environmental factors 
which increase the risk of the defect have been identified. 
They include the economic factor, risks at work and at home: 
pesticides, living near dangerous waste disposal areas, 
environmental pollution, such as lead or sulfur pollution, 
or contamination of drinking water.

A review of the literature on the topic shows that the risk 
of CL±P is higher when the mother is exposed to tobacco 
smoke [1, 2, 3], takes medicines [4, 5], drinks alcohol [6, 7], 
is exposed to chemicals at work or at home [8,9], drinks 
contaminated water [10], lives in a lead-polluted [11] or sulfur-
polluted area [12, 13], lives in an air-polluted area [14, 15] or 
near dangerous waste disposal areas [16], or has vitamin and 
folic acid deficiencies [17, 18]. Also, individual factors, such as 

mother’s older age or a higher number of pregnancies, have 
a negative influence [19].

Identification of the environmental factors which together 
influence the occurrence of the defect is difficult. It could be 
helpful to define clusters of CL±P, that is the geographic location 
of areas with an increased prevalence of that malformation.

The identification of the geographic clusters, on the one 
hand, would allow a more precise analysis of the risk factors 
and, on the other hand, targeted prevention.

Although methods of spatial analysis are becoming 
increasingly popular in the epidemiology of congenital 
malformations, there is a significant obstacle to their use, 
namely, the relatively low prevalence of such malformations. 
Methods of spatial analysis have been used chiefly for data from 
large, long-running registers of congenital malformations, 
with full reportability of the malformations. This is why, to 
date, there have been few sufficiently detailed studies on the 
topic. The existing studies concerning isolated CL±P limit the 
analysis of the geographic factor to a dichotomous division of 
space into urban and rural areas [20, 21], or to a division of 
space into two, three or four regions, i.e. north, south, east, 
and west [22, 23]. Unfortunately, such a form of structuring 
the studies does not make it easier to identify environmental 
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teratogens in a specific geographic location. A review of the 
literature shows that in only one study the defect is examined 
more thoroughly [24]. That study describes in broad terms 
the limitations of analyzing malformations with relatively 
small prevalences – especially cleft lip (n= 894 cases, 458,593 
live births). The analyses presented concern the state of Utah 
In the USA in 1995–2004. In order to define clusters, the 
studied area of the state has been divided into 61 parts. 
The conducted statistical analyses with the use of, among 
other tools, Kulldorff’s scan statistic, reveal clusters with an 
increased prevalence of CL±P, however, the result is on the 
verge of statistical significance.

The first studies on the spatial pattern of the prevalence of 
congenital malformations have also been conducted with the 
use of PRCM data and concern the Wielkopolskie Province of 
Poland in 1999–2006. In this case, too, a small differentiation 
of the prevalences of CL±P is shown [25].

Objectives. The aim of this study is to determine if there 
are regions In Poland with an increased prevalence of cleft 
lip and palate in the area covered by PRCM. Two methods 
were used for the identification of an increased prevalence 
of CL±P, namely: Anselin’s LISA [26] and Kulldorff’s scan 
statistic [27].

MATERIALS AND METHOD

The first stage of the study, i.e. the search for clusters, involved 
the proper preparation of the collected data so that they 
form a consistent Geographic Information System (GIS). The 
GIS database contained descriptions of objects located in a 
geographic space. In principle, such a database comprises 
two parts: 1) a set of attribute data characterizing the non-
spatial features of objects; 2) a set of spatial data defining 
the location of an object with the help of coordinates in an 
established reference system. Such a base is complemented by 
a map representing the relative locations of the spatial objects.

The prevalence of CL±P was determined on the basis of 
the data obtained from PRCM for 2007–2008. In those years, 
PRCM covered the areas of all 16 provinces. The communities 
of residence of the mothers of children with diagnosed CL±P 
are the basis for the analysis.

Spatial data are the information about the location of 
the communities. A community (gmina) is the smallest 
administrative unit available for the determination of the 
mothers’ places of residence. The geographic locations 
of communities are defined by their boundaries, i.e. by 
polygons. The obtained maps are provided in the form of 
polygons saved in the vector format in a scale of 1:250,000. 
Additionally, for the purpose of further analyses, the location 
of a community was also represented with the use of a 
centroid defined for every polygon. A centroid is a point 
within a polygon which represents a geometric calculation 
of the intuitive ‘middle’. In terms of administrative divisions, 
communities are classified as: urban, rural, and urban-rural 
communities. For the purpose of this study, the urban and 
rural communities were left unchanged, but the urban-rural 
communities were divided into urban and rural parts. The 
communities comprise 3,045 separate areas within the area 
of the provinces covered by the analysis.

Descriptive data have been recorded in the form of 
a relational MySql database and constitute additional 

information about particular geographic objects. In the 
presented study, the descriptive data concern the studied 
group and the population data. The studied group consists 
of mothers of children with isolated CL±P who were born 
in 2007 and 2008 in the area covered by PRCM. The criteria 
of inclusion in the analysis were the completeness of the 
information concerning the community of a mother’s 
residence and the year of birth. Those conditions were fulfilled 
by 514 mothers. The point of reference for the conducted 
analysis was a population of 802,372 live births in particular 
communities – data provided by the Central Statistical 
Office [28]. The basic descriptive statistics of the congenital 
malformation are the coefficients of the prevalences of that 
malformation in a given year.

Visualization of the spatial distribution of isolated CL±P. 
Statistical calculations and visualizations of the results on 
the surface of the map were conducted with the use of the 
PQStat 1.4.6 programme and (for Kulldorff’s statistic) the 
StatScan v9.1.1 programme.

The suggested ways of presenting the studied phenomenon 
took into account the important epidemiological problem 
of personal data protection; the maps therefore had to be 
compiled in such a way that particular persons could not be 
identified via their data. For this reason, points were not used 
to mark the place of residence of particular persons; instead, 
the maps are coloured in accordance with the coefficients 
of the prevalence of the defect for aggregated individuals.

A cartogram was used to present the coefficients on the 
map surface. For better legibility of the presented maps, 
exact values of the coefficients have not been drawn for every 
community, but for classes of communities. There are many 
methods of classifying coefficients [29, 30, 31], and in this 
study the communities have been classified on the basis of 
their coefficient with the use of statistical formula of natural 
breaks, i.e. Jenks’ Natural Breaks [32] which forms subgroups 
in an ordered dataset in such a way that the variance of values 
within each group is minimized.

Very often, especially in analyses of congenital 
malformations, datasets are encountered in which for many 
areas the studied group sizes are very small – many of them 
equal 0. Hence, the calculated coefficients are too sensitive 
(unstable) to small changes of data. A simple way of coping 
with such cases has been proposed by Cressi et al. [33]. It 
involves adding a small number to the size of a group of 
children with the defect in every community. Another method 
is smoothing, with the use of locally weighted averages, which 
reduces the range of raw coefficients and makes it closer to the 
average. The method is based on a calculated weighted mean 
for a given community and the neighboring communities. As 
a result of the addition of weights, the geographically nearest 
communities have a greatest influence on the calculated 
smoothed coefficient, and instability is reduced.

Excess risk maps are used to present an increased or 
decreased risk of the occurrence of a defect, in comparison 
with the average.

Neighbourhood structure. The neighborhood structure 
is usually represented by a spatial weight matrix. In the 
simplest case that is a symmetrical binary 0–1 matrix where 
one means that two units are neighbors and 0 means lack 
of a neighborhood. The relationship of neighborhood is 
defined in different ways, usually by contiguity (a common 
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boundary) of the spatial units, or in the meaning of distance, 
in a defined metric (most often, the Euclidean metric or on 
a sphere/geoid).

In the presented study, a row-standardized spatial weight 
matrix has been used for the visualization of maps, and 
in Moran’s analysis. The matrix standardization balanced 
the influence of the communities with various numbers of 
neighbours on the obtained results. The matrix has been 
built on the basis of the distance criterion, with the use 
of the reverse Euclidean distance. It has been assumed 
that a distance of not more than 30 km between centroids 
constitutes a neighbourhood. Thus, the closer communities 
have a greater influence on the obtained result in the analyses, 
based on that matrix than the further ones, and the influence 
of the coefficients from communities outside the circle with 
a 30 km radius equals zero.

Kulldorff’s analysis is not directly based on the 
neighbourhood matrix. For the results obtained with the 
help of local Moran’s statistic and Kulldorff’s statistic to be 
comparable, a similar assumption about the neighbourhood 
has been made in Kulldorff’s analysis. The scanning window 
has been defined as an ellipse with the maximum length of 
the minor semi-axis equal to 30 km.

Methods of identifying spatial clusters. The adopted level 
of test significance for the statistical inference is α=0.05. 
In the case of multiple comparisons, the level of statistical 
significance has been corrected according to Bonferroni›s 
method.

In this study, two methods of identifying spatial clusters 
have been used: Anselin’s LISA [26] and the second based 
on Kulldorff’s scan statistic [27]. The aim of both methods is 
the same: to determine if a given area, understood as a set of 
spatial units, is a cluster, that is an area distinguishing itself 
from the surrounding because of an increased prevalence of 
the congenital malformation. Nevertheless, the two methods 
have different assumptions and origins. Anselin’s method is 
derived from spatial econometrics and is used, in principle, 
for data aggregated into continuous spatial units. Still, on the 
level of the definition of spatial weight matrices there are no 
contraindications to use the method for point data. Kulldorff’s 
method represents a geostatistical approach in which point 
data are most often used. The use and comparison of the two 
methods in this study is possible because the data have been 
aggregated to many small spatial units (communities, parts 
of communities). The data are characterized with relatively 
large homogeneousness in a territorial system, and can be 
transformed into a point representation with the use of a 
centroid, without a loss of generality.

The detection of a statistically significant cluster is the 
beginning of a long and costly procedure defined by cluster 
investigation protocols [34]. Each of the statistical methods 
is based on its own criteria; therefore, the obtained results 
are not always compatible. This is why it is important to 
confirm the existence of a cluster by more than one statistical 
method [35].

Anselin’s LISA is based on the analysis of the so-called 
spatial autocorrelation. This method assumes that spatial 
autocorrelation is the result of the existence of spatial 
dependence in the located data. That means that the value of 
a given variable in a spatial unit depends on the value of that 
variable in other spatial units and, according to Tobler’s law 
[36], the strongest influence is that of neighbouring 

observations. Spatial autocorrelation may not occur – in such 
a case, one speaks of spatial randomness. The obtained spatial 
distribution is as probable as any other distribution (Fig. 1a). 
When the neighbuoring values are similar to one another, one 
can speak about a positive autocorrelation (Fig. 1b). Negative 
autocorrelation occurs when the neighbouring areas differ 
more than could be explained by random distribution (Fig. 1c).

The most common coefficient in the studies of spatial 
autocorrelations is the global Moran’s coefficient:

where:

zi, zj – prevalence of isolated CL±P for particular com-
munities;

z – value of the expected prevalence (average) of isolated 
CL±P for the whole analyzed area;

wij – an element of a matrix of spatial weights;
n – number of communities.

A positive value of the standardized Moran’s I coefficient 
means the presence of clusters with similar values (hot spots, 
cold spots), a value near 0 means the lack of autocorrelation, 
and a negative value means the presence of the so-called 
outliers, that is decidedly different values in a neighbourhood.

Asumptions of the theory of Local Indicators of Spatial 
Autocorrelation. A disadvantage of Moran’s statistic is that 
it only provides the estimate of an averaged global pattern 
of spatial autocorrelation in the studied area, whereas the 
presence of clusters is the result of the presence of local 
deviations from the global pattern of spatial autocorrelation 
which, in turn, are the result of the instability of the strength 
of spatial dependence, that is its heterogeneousness connected 
with the local non-stationarity of the analyzed variable. Local 
Indicators of Spatial Autocorrelation are used for identifying 
such areas. One of them is the local Moran’s Ii statistic [26] 
which allows the search for clusters by checking if an area is 
surrounded by neighbours with similar or different values 
of the coefficient. The value of the statistic of this test is 
determined for every object (every community) and defined 
in analogy to its global counterpart. The interpretation is 
also similar. A positive value of the coefficient means that 
a community is surrounded by other communities with a 
similar value of the studied coefficient, whereas a negative 
value means that the community is surrounded by other 
communities with significantly different values. The null 
hypothesis in the local Moran’s statistic assumes the lack of 
spatial autocorrelation (H0:Ii = 0).

c) negative autocorrelationb) positive autocorrelationa) spatial randomnes

Figure 1. Sample spatial autocorrelation distributions
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Because the local Moran’s statistic can be correlated for 
neighbouring communities, the significance level is corrected 
by the average number of neighbours [26]. The tools for this 
are Bonferroni α1 = αk   or Šidák corrections α1 = (1 – (1 – α)1/k 
where k is the average number of neighbours. In this study, 
the average number of neighbouring communities is 28; 
therefore, the significance level assumed for the LISA analysis 
is α1 = 0.0018.

Assumptions of Kulldorff’s scan statistic. Kulldorff’s 
scan statistic [37, 27] is another method which allows 
the identification clusters, and refers both to the popular 
Openshaw’s GAM method [38] and Turnbull’s procedure 
[39]. The general idea is to scan the studied set of spatial 
units with the help of a window of a predefined shape and 
maximum size. It was used for the first time in Kulldorff 
and Nagarwalla’s study [36] to determine the clusters of 
leukemia cases in the state of New York. A review of the 
studies conducted on the basis of spatial scan statistic can 
be found in the book in Spatial Analysis Epidemiology [40]. 
Kulldorff also suggested and developed a time-spatial version 
of scan statistic [41, 42, 43].

The search for clusters with the use of Kulldorff’s method 
is made with the help of a scan window:
•	 range – for temporal clusters,
•	 circle or an ellipsis – for spatial clusters,
•	 cylinder – for spatio-temporal clusters.

Various sizes of the scan window are used, determined 
with the use of the Euclidean metric. For every position and 
size of such a window, the observed sizes and the expected 
sizes, inside and outside the window, are calculated, and the 
space is scanned in the search for the most probable cluster. 
Seemingly, the scanning process can be defined as infinite, 
but it has been restricted to a finished number of steps by 
adding to the following conditions:
1) limitation of the number of attachment points of the 

scanning window;
2) limitation of the spatial range to be covered by the window.

These limitations make it possible to intervene in the size 
and placement of the scan windows, and thus to steer the 
scanning process at one’s will (Fig. 2).

A study of the statistical significance of the scan window 
is defined by the likelihood ratio test. We test H0 : p = q 
where: p – probability of the occurrence of a defect inside 
the scan window Z, q – probability of the occurrence of a 
defect outside the scan window Z.

Construction of the test begins with the determination of 
the likelihood function L(Z, p, q) for a given window Z. The 
gathered population data and data concerning the congenital 
malformation allow the use of Poisson’s model as the basis 
for the likelihood function. The likelihood function for the 
Z window has the form:

where:
c – number of children with a congenital malformation 

inside the scan window;
C – total number of children;
E(c) – expected frequency outside the scan window;
C-E(c) – expected frequency inside the scan window;

I() – indicator function equals 1 when the number of 
cases inside the window is greater than the expected 
frequency, or equals 0 in the opposite case.

The procedure for determining the likelihood function 
is repeated for every position and size of the scan window. 
The most likely cluster  is the scan window for which the 
maximum of the likelihood function is the highest. That is the 
cluster with the smallest likelihood of accidental appearance. 
Statistical significance is defined for that window with the 
use of the likelihood ratio test.

Having determined the most distinguished cluster, other 
clusters are searched for. The above procedure is repeated 
for that goal, with the exclusion of the previously detected 
cluster from the analyzed area.

Comparison of results obtained by the LISA and Kulldorff 
methods. The results obtained with the use of the LISA and 
Kulldorff methods, i.e. clusters with increased prevalence, 
were compared. The agreement of the assignment of 
communities to clusters was checked by Cohen’s kappa 
agreement coefficient. The coefficients of the prevalence of 
the malformation was compared with the Mann-Whitney 
and Kruskal-Wallis tests, assuming the significance level 
to be α=0.05.

RESULTS

Visualization of spatial distribution of isolated CL±P. The 
basic descriptive statistics of the congenital malformation 
are the frequency coefficients of the prevalence of that 
malformation in a given area, in this case, in the area of 
communities.

When presenting the coefficients on a map with the use of 
a cartogram, 5 or 7 classes are usually distinguished. Here, 
the distinction was made by assigning communities to one 
of 5 Classes on the basis of their coefficients, with the use of 
Jenks natural breaks (Fig. 3).

Figure 4 shows the distinction between the areas previously 
described as 0, according to the Cressi method, by adding value 
0.1 to the number of children with the malformation. This 
method allows the introduction of a distinction among the 
areas of small sizes, but the problem of instability remains.
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Figure 2. An example of scanning Poland using Kulldorff’s scan windows
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Figure 5 presents the results of the use of smoothing with 
the use of the weighted averages method.

Excess risk map is presented in Figure 6. The grey colour 
represents communities in which the coefficient is close to 
the average coefficient calculated for the whole area. The 
black colour is for a coefficient higher than the average, and 
white is for a lower one.

Results of using the theories of Local Indicators of Spatial 
Autocorrelation (LISA). From the point of view of this study, 
the interesting clusters are those with a higher frequency of 
the prevalence of isolated CL±P. It has been checked if the 
communities with high CL±P prevalence neighbour the 
communities with high CL±P prevalence. Such communities 
are marked in black on the map (Fig. 7). When the corrected 
significance level of α1 = 0.0018 is assumed, the determined 
communities constitute the centres of clusters with a higher 
prevalence of isolated CL±P.

24 communities marked in black on the map, determined 
on the basis of the values of the coefficients of the prevalence 
of isolated CL±P for those communities, and for the 
neighbouring communities within the radius of 30  km. 
This is why zones have been marked out around the 24 
communities. The overlapping zones combine, forming 
homogeneous groups. In this way, 8 consistent, non-

Figure 3. Raw coefficients of isolated CL±P in 2007–2008 in Poland, according to 
Jenks’ natural breaks

Figure 5. Smoothed coefficients of the prevalence of isolated CL±P in 2007–2008 
in Poland, presented according to Jenks’ natural breaks

Figure 6. Excess risk map of the presence of isolated CL±P in 2007–2008 in Poland, 
presented according to Jenks’ natural breaks

Figure 7. Results of the LISA analysis

Figure 4. Raw coefficients of isolated CL±P in 2007–2008 in Poland, modified 
according to the Cressi method; presented according to Jenks’ natural breaks
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overlapping areas with higher prevalence of the isolated 
CL±P were determined. Further in the study, these areas 
will be referred to as L-clusters.

Results of the use of the theory of Kulldorff’s scan statistic. 
Looking for other clusters, Kulldorff’s method excludes from 
the analysis those communities which were included in the 
previous clusters. Hence, the clusters determined with the 
use of Kulldorff’s scan statistic do not overlap.

According to the result of Kulldorff’s statistic, the 
determined clusters do not constitute statistically significant 
clusters, but only clusters with a somewhat higher prevalence 
of isolated CL±P (Tab. 1) – there are 7 of them. Further in the 
study, these places will be referred to as K-clusters.

Comparison of results obtained with the use of LISA and 
Kulldorff’s methods. Comparative analysis of the local 
methods of searching for clusters includes the areas the only 
distinction of which is a somewhat higher coefficient of the 
prevalence of isolated CL±P. Table 2 presents the number of 
communities inside and outside the clusters determined with 
the use of the K (Kulldorff’s) and L (LISA) methods.

371 communities belonged to the clusters determined with 
the use of the LISA method, whereas only 168 communities 
belonged to the clusters determined with the use of Kulldorff’s 
method. Because each technique is based on its own criteria, 
the two methods may not always select the same communities 
for clusters. However, the overlap of the results indicates that 
both methods illustrate various elements of the same clusters. 
The agreement of the assignment of communities to clusters 
was studied by determining Cohen’s kappa coefficient on the 
basis of the results presented in Table 2. The coefficient was 
kappa (95%CI) =31.44% (26.12%, 36.76%) and statistically 

significant p <0.00001. This indicates agreement between 
the two methods.

A comparison of the geographic range of the zones shows 
that both methods determined a similar area (Fig. 8). Only 
two L-clusters and one K-cluster do not overlap.

A comparison of the coefficient of the prevalence of the 
isolated CL±P among the areas covered by a cluster and the 
areas outside of the cluster indicates that both methods have 
shown the right placement of the clusters (Tab. 3). In both 
cases, the coefficient of the prevalence of the isolated CL±P 
in clusters is statistically significantly higher than outside 
the clusters (the mean of the ranks of the communities in 
the clusters is higher than outside the clusters).

The coefficient of the prevalence of the isolated CL±P 
among the areas outside the clusters, areas covered by 
only one cluster (L-cluster or K-cluster), and areas covered 
simultaneously by L-clusters and K-clusters (Fig. 9), were 
compared.

The Kruskall-Wallis test indicates the existence of a 
statistically significant difference between the values of the 
coefficients for the compared areas (p-value <0.00001). 
According to a post-hoc analysis made with the Dunn test, 

Table 2. Number of communities inside and outside the K and L clusters

No. of communities Outside the K-clusters Inside the K-clusters Total

Outside the L-clusters 2,604  70 2,674

Inside the L-clusters 2,72  99 371

Total 2,876 169 3,045

Figure 8. Assignment of communities to particular L-clusters and K-clusters

Table 1. Results of Kulldorff’s scan analysis

 

K-clusters according to the order of their determination

K-cluster 1 K-cluster 2 K-cluster 3 K-cluster 4 K-cluster 5 K-cluster 6 K-cluster 7

Community at the centre of the ellipsis Pyzdry Bojadła Stary Targ Łaskarzew Rymań Widawa Stara Dąbrowa

Province at the centre of the ellipsis Wielkopolskie Lubuskie Pomorskie Mazowieckie Zachodnio pomorskie Łódzkie Zachodnio pomorskie

Semi-minor axis 22.6km 22.4km 29.8km 74.4km 23.9km 99.2km 80.8km

Semi-major axis 45.3km 50.7km 89.3km 11.2km 23.9km 19.8km 12.1km

Population 3387 5158 8048 281 1119 263 146

No. of cases 17 20 27 4 7 4 3

Expected frequency 4.34 6.61 10.31 0.36 1.43 0.34 0.19

p-value 0.118 (NS) 0.441 (NS) 0.652 (NS) 0.983 (NS) 0.993 (NS) 0.993 (NS) 0.998 (NS)

NS: lack of statistical significance -  value p >= 0.05
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the difference is located only between the communities in 
both clusters and the remaining two groups of commu-
nities (Tab. 4).

DISCUSSION

The presented study represents a geostatistical and 
econometrical attitude toward the study of congenital 
malformations, on the example of isolated CL±P. It provides 
an insight into the possible ways of visualization on maps 
of frequency coefficients of the prevalence of congenital 
malformations. It discusses the ways of managing the 
instability resulting from small frequencies of congenital 
malformations for areas aggregated to small surfaces. 
Therefore, it facilitates the reception and understanding of 
maps by a reader who is neither a statistician nor a geographer.

The maps in the presented study show the areas aggregated 
to the level of the communities for which the analysis was 
made. Such a detailed division allows a more precise spatial 
analysis than the usually suggested analysis, i.e. an analysis 
limited to the distinction between the urban and the rural 
areas [20, 21], or to a distinction into other two to four 
regions, e.g. north, south, east, and west [22, 23].

These studies show that with the aggregation to the level 
of communities, the prevalence of CL±P in Poland is not 
completely independent from the location of the mother’s 
place of residence. The indicated locations with an increased 
prevalence of the malformation are not, however, statistically 
significant in the light of the two implemented methods. 
That precludes the existence of a single, homogeneous and 
strong source of environmental exposure in the years 2007 

and 2008 in Poland. Still, it is definitely recommended to 
systematically monitor the area covered by the Polish Register 
of Congenital Malformations. It is the more important as a 
similar tendency to non-homogeneous distribution of the 
prevalences has also been observed on the territory covered 
by other registers of congenital malformations. For example, 
similar, statistically non-significant clusters with higher 
prevalence of CL±P have been obtained for the state of Utah 
in the USA [24], and for the Norwegian population [22] where 
significant differences in the CL±P prevalences have been 
shown for different regions.

Although the presented study only found areas with higher 
prevalences of CL±P, it has been determined that the spatial 
location of the detected L-clusters and K-clusters is similar. 
It can therefore be assumed that the results obtained with 
the use of both methods are in agreement. The differences 
which appear in a more detailed analysis are due to the 
fact that in Kulldorff’s method the manner of searching for 
clusters allows the finding of its optimum size, whereas in 
the LISA method that size is assumed in advance. The lack 
of elasticity of the L-cluster window in this analysis results 
from the fact that it also includes those communities which, 
due to a low coefficient, would not otherwise have to be 
placed in the cluster. This is why, in spite of the agreement 
as to the spatial location, the different range (size) of the 
zones determined by the compared methods makes the 
coefficient of the isolated CL±P of the communities inside the 
overlapping L-clusters and K-clusters much higher than that 
of the remaining areas. The coefficients of the communities 
which only belong to a cluster determined by one of the 
methods, do not significantly differ from the communities 
outside the clusters.

When looking for clusters, it is not usually possible to 
precisely define their size; greater the searched area, the 
more difficult the task, and the more windows of different 
sizes can be placed in it. It should to be remembered that 
each real cluster in the studied area can have a completely 
different size. It is therefore difficult to determine a size 
which would be appropriate for every cluster. In some cases, 
this might be impossible. It is much easier to determine a 
maximum, meaningful from the point of view of the studied 
phenomenon, radius to which the window can extend. This 
is why, from the practical point of view, Kulldorff’s method 
is more universal and precise. Another advantage of the 
spatial scan statistic is great statistic power, needed to detect 
the most probable cluster [44, 45], especially when its shape 
is similar to an ellipsis.

CONCLUSIONS

The study shows that the method which has been 
comprehensively presented here is useful for analyzing 
epidemiological data collected by large, long-running medical 
registers. It gives much more precise information about the 
spatial pattern of the occurrence of a given malformation 
than the mere division of a region into urban and rural areas. 
The presented methods of searching for clusters (LISA and 
Kulldorff) on the example of the coefficient of the prevalence 
of the isolated CL±P, consistently pointed to the location of 
areas with a higher prevalence of CL±P for the area covered 
by PRCM. However, because the principles of the methods 
of spatial analysis are different, as are the possibilities of 

Table 4. Results of the Dunn test

p-value Outside clusters
Inside L or K 

clusters
Inside L and K 

clusters

outside clusters –    

inside L or K clusters 0.24120 –  

inside L and K clusters <0.00001 0.00081 –

Figure 9. Coefficients of the prevalence of isolated CL±P for communities outside 
the clusters, in one of the clusters, or in two clusters

Table 3. Results of the Mann-Whitney test corrected for rank ties

K-clusters mean of the ranks = 1881.91
p<0.00001

Outside the K-clusters mean of the ranks = 1501.90

L-clusters mean of the ranks = 1647.32
p<0.00001

Outside the L-clusters mean of the ranks = 1505.75

Median
Q1, Q3
Min/Max400

300

200

100

0

CL
P 

pe
r 1

00
0

inside L or K
clusters

inside L and K
clusters

outside clusters
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dividing the analyzed area into, e.g. communities or counties, 
the results obtained with the use of particular methods with 
diverse initial settings can vary somewhat. This is why it is 
important to use more than one method at the same time.

Locating an area with an increased coefficient of isolated 
CL±P indicates the need for further monitoring by PRCM.
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