PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 29 | 5 |

Tytuł artykułu

Salt-tolerant reed plants contain lower Na plus and higher K plus than salt-sensitive reed plants

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Reed plants (Phragmites australis Trinius) grow not only in fresh and brackish water areas but also in arid and high salinity regions. Reed plants obtained from a riverside (Utsunomiya) were damaged by 257 mM NaCl, whereas desert plants (Nanpi) were not. When the plants were grown under salt stress, the shoots of the Utsunomiya plants contained high levels of sodium and low levels of potassium, whereas the upper part of the Nanpi plants contained low levels of sodium and high levels of potassium. One month salt stress did not affect potassium contents in either Utsunomiya or Nanpi plants, but it did dramatically increase sodium contents only in the Utsunomiya plants. The ratio of K⁺ to Na⁺ was maintained at a high level in the upper parts of the Nanpi plants, whereas the ratio markedly decreased in the Utsunomiya plants in the presence of NaCl. Accumulation of Na⁺ in the roots and Na⁺ efflux from the roots were greater in the Nanpi plants than in the Utsunomiya plants. These results suggest that the salt tolerance mechanisms of Nanpi reed plants include an improved ability to take up K⁺ to prevent an influx of Na⁺ and an improved ability to exclude Na⁺ from the roots.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

29

Numer

5

Opis fizyczny

p.431-438,fig.,ref.

Twórcy

autor
  • Asian Natural Environmental Science Center (ANESC), The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-shi, 188-0002 Tokyo, Japan
autor
  • Weed Science Center (WSC), Utsunomiya University, 350 Mine-machi, Utsunomiya-shi, 321-8505 Tochigi, Japan
autor
  • Weed Science Center (WSC), Utsunomiya University, 350 Mine-machi, Utsunomiya-shi, 321-8505 Tochigi, Japan
autor
  • Asian Natural Environmental Science Center (ANESC), The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-shi, 188-0002 Tokyo, Japan

Bibliografia

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na⁺/H⁺ antiporter in Arabidopsis. Science 285:1256–1258
  • Berthomieu P, Conejero G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah PA, Tester M, Very AA, Sentenac H, Casse F (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na⁺ recirculation by the phloem is crucial for salt tolerance. EMBO J 22:2004–2014
  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434
  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta 1465:140–151
  • Bressan RA, Hasegawa PM, Pardo JM (1998) Plants use calcium to resolve salt stress. Trends Plant Sci 3:411–412
  • Fairbairn DJ, Liu W, Schachtman DP, Gomez-Gallego S, Day SR, Teasdale RD (2000) Characterisation of two distinct HKT1-like potassium transporters from Eucalyptus camaldulensis. Plant Mol Biol 43:515–525
  • Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants: where next? Aust J Plant Physiol 22:875–884
  • Flowers TJ, Garcia A, Koyama M, Yeo AR (1997) Breeding for salt tolerance in crop plants—the role of molecular biology. Acta Physiol Plant 19:427–433
  • Fukuda A, Nakamura A, Tanaka Y (1999) Molecular cloning and expression of the Na⁺/H⁺ exchanger gene in Oryza sativa. Biochim Biophys Acta 1446:149–155
  • Garciadeblas B, Senn ME, Banuelos MA, Rodriguez-Navarro A (2003) Sodium transport and HKT transporters: the rice model. Plant J 34:788–801
  • Hamada A, Shono M, Xia T, Ohta M, Hayashi Y, Tanaka A, Hayakawa T (2001) Isolation and characterization of a Na⁺/H⁺ antiporter gene from the halophyte Atriplex gmelini. Plant Mol Biol 46:35–42
  • Hartzendorf T, Rolletschek H (2001) Effects of NaCl-salinity on amino acid and carbohydrate contents of Phragmites australis. Aquat Bot 69:195–208
  • Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A (2001) Two types of HKT transporters with different properties of Na⁺ and K⁺ transport in Oryza sativa. Plant J 27:129–138
  • Lissner J, Schierup HH, Comin FA, Astorga V (1999) Effect of climate on the salt tolerance of two Phragmites australis populations. I. Growth, inorganic solutes, nitrogen relations and osmoregulation. Aquat Bot 64:317–333
  • Liu W, Fairbairn DJ, Reid RJ, Schachtman DP (2001) Characterization of two HKT1 homologues from Eucalyptus camaldulensis that display intrinsic osmosensing capability. Plant Physiol 127:283–294
  • Maser P, Eckelman B, Vaidyanathan R, Horie T, Fairbairn DJ, Kubo M, Yamagami M, Yamaguchi K, Nishimura M, Uozumi N, Robertson W, Sussman MR, Schroeder JI (2002a) Altered shoot/root Na⁺ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na⁺ transporter AtHKT1. FEBS Lett 531:157–161
  • Maser P, Gierth M, Schroeder JI (2002b) Molecular mechanisms of potassium and sodium uptake in plants. Plant Soil 247:43–54
  • Matoh T, Matsushita N, Takahashi E (1988) Salt tolerance of the reed plant Phragmites communis. Physiol Plant 72:8–14
  • Matsushita N, Matoh T (1991) Characterization of Na⁺ exclusion mechanisms of salt-tolerant reed plants in comparison with salt-sensitive rice plants. Physiol Plant 83:170–176
  • Matsushita N, Matoh T (1992) Function of the shoot base of salt-tolerant reed (Phragmites communis Trinius) plants for Na⁺ exclusion from the shoots. Soil Sci Plant Nutr 38:565–571
  • Nagaoka S, Takano T (2003) Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis. J Exp Bot 54:2231–2237
  • Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742
  • Rains DW, Epstein E (1967) Sodium absorption by barley roots: its mediation by mechanism 2 of alkali cation transport. Plant Physiol 42:319–323
  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146
  • Rubio F, Santa-Maria GE, Rodriguez-Navarro A (2000) Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiol Plant 109:34–43
  • Rubio F, Flores P, Navarro JM, Martinez V (2003) Effects of Ca²⁺, K⁺ and cGMP on Na⁺ uptake in pepper plants. Plant Sci 165:1043–1049
  • Santa-Maria GE, Rubio F, Dubcovsky J, Rodriguez-Navarro A (1997) The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 9:2281–2289
  • Schachtman DP, Liu W (1999) Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants. Trends Plant Sci 4:281–287
  • Schachtman DP, Schroeder JI (1994) Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370:655–658
  • Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thariana salt tolerance gene SOS1 encodes a putative Na⁺/H⁺ antiporter. Proc Natl Acad Sci USA 97:6896–6901
  • Su H, Balderas E, Vera-Estrella R, Golldack D, Quigley F, Zhao C, Pantoja O, Bohnert HJ (2003) Expression of the cation transporter McHKT1 in a halophyte. Plant Mol Biol 52:967–980
  • Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S, Tuboi A, Bakker EP, Nakamura T, Schroeder JI (2000) The Arabidopsis HKT1 gene homolog mediates inward Na⁺ currents in Xenopus laevis oocytes and Na⁺ uptake in Saccharomyces cerevisiae. Plant Physiol 122:1249–1259
  • Wang H, Zhang C, Liang H (1995) Seasonal change of polyamine in habitat adaptation of ecotypes of reed plants. Oecologia 101:119–123
  • Xia T, Apse MP, Aharon GS, Blumwald E (2002) Identification and characterization of a NaCl-inducible vacuolar Na⁺/H⁺ antiporter in Beta vulgaris. Physiol Plant 116:206–212
  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71
  • Zhu JK, Liu J, Xiong L (1998) Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell 10:1181–1191

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f628f8a4-fd3f-4a8b-a333-311d744a44c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.