PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 18 | 4 |

Tytuł artykułu

Gametophytic self-incompatibility in Rosaceae fruit trees

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Rosaceae fruit trees are characterized by gametophytic self-incompatibility, with their production typically requiring artificial pollination or pollination tree is required in production. Both of these solutions cause reductions in production efficiency, and self-incompatibility has become a major issue in agricultural biology, and as such, has been extensively studied. In this review, we discuss the relationship between S-RNase content in the style and self-incompatibility, and the role of the SLF gene in stamen-determining factor. Considering mutations in self-compatibility-related genes and self-compatibility in polyploid fruit trees, we discuss the potential mechanisms of self-incompatibility. Based on a preliminary study of the role of pollen tube Ca2+ gradients in self-incompatibility in Pyrus, we propose a new mechanistic model of self-incompatibility taking into account the effect of Ca2+. We also discuss the potential for hormone regulation to be used to control selfincompatibility in Rosaceae fruit trees.

Wydawca

-

Rocznik

Tom

18

Numer

4

Opis fizyczny

p.149-156,fig.,ref.

Twórcy

autor
  • College of Horticulture, Qingdao Agricultural University, Qingdao City, China
autor
  • College of Horticulture, Qingdao Agricultural University, Qingdao City, China

Bibliografia

  • Burgos, L., Egea, J., Guerriero, R., Viti, R., Monteleone, P., Audergon, J. (1997). The self-compatibility trait of the main apricot cultivars and new selections from breeding programmes. J. Hortic. Sci. Biotechnol., 72(1), 147– 154. DOI: 10.1080/14620316.1997.11515501
  • Franklin-Tong, N.V., Franklin, F.C.H. (2003). Gametophytic self-incompatibility inhibits pollen tube growth using different mechanisms. Trends Plant Sci., 8(12), 598– 605. DOI: 10.1016/j.tplants.2003.10.008
  • Franklin‐Tong, V.E., Hackett, G., Hepler, P.K. (1997). Ratio‐imaging of Ca2+i in the self‐incompatibility response in pollen tubes of Papaver rhoeas. Plant J., 12(6), 1375– 1386. DOI: 10.1046/j.1365-313x.1997.12061375.x
  • Gray, J.E., McClure, B.A., Bonig, I., Anderson, M.A., Clarke, A.E. (1991). Action of the style product of the self-incompatibility gene of Nicotiana alata (S-RNase) on in vitro-grown pollen tubes. Plant Cell, 3(3), 271– 283. DOI: 10.2307/3869367
  • Huang, S.-X., Wu, H.-Q., Li, Y.-R., Wu, J., Zhang, S.-J., Heng, W., Zhang, S.-L. (2008). Competitive interaction between two functional S-haplotypes confer self-compatibility on tetraploid Chinese cherry (Prunus pseudocerasus Lindl. cv. Nanjing Chuisi). Plant Cell Rep., 27(6), 1075–1085. DOI: 10.1007/s00299-008-0528-7
  • Janssens, G., Goderis, I., Broekaert, W., Broothaerts, W. (1995). A molecular method for S-allele identification in apple based on allele-specific PCR. Theor. Appl. Genet., 91(4), 691–698. DOI: 10.1007/BF00223298
  • Kao, T.-h., Tsukamoto, T. (2004). The molecular and genetic bases of S-RNase-based self-incompatibility. Plant Cell, 16(suppl. 1), S72–S83. DOI: 10.1105/tpc.016154
  • Kirch, H., Uhrig, H., Lottspeich, F., Salamini, F., Thompson, R. (1989). Characterization of proteins associated with self-incompatibility in Solanum tuberosum. Theor. Appl. Genet., 78(4), 581–588. DOI: 10.1007/BF00290845
  • Li, X., Li, M., Han, Z., Xu, X., Li, T. (2008). Self-compatible Pear Cultivar ‘Yanzhuang’ Resulting from S-RNase Mutation of ‘Ya Li’ (Pyrus bretschneideri Rehd.). Acta Hortic. Sinica (Chinese), 35(1), 13–18. DOI: 10.3724/ SP.J.1005.2008.01083
  • Liu, W., Fan, J., Li, J., Song, Y., Li, Q., Zhang, Y.e., Xue, Y. (2014). SCFSLF-mediated cytosolic degradation of S-RNase is required for cross-pollen compatibility in S-RNase-based self-incompatibility in Petunia hybrida. Front. Genet., 5(228). DOI: 10.3389/fgene.2014.00228
  • Luu, D.-T., Qin, X., Morse, D., Cappadocia, M. (2000). S-RNase uptake by compatible pollen tubes in gametophytic self-incompatibility. Nature, 407(6804), 649– 651. DOI: 10.1038/35036623
  • McClure, B. (2006). New views of S-RNase-based self-incompatibility. Curr. Opin. Plant Biol., 9(6), 639–646. DOI: 10.1016/j.pbi.2006.09.004
  • Meng, D., Gu, Z., Li, W., Wang, A., Yuan, H., Yang, Q., Li, T. (2014a). Apple MdABCF assists in the transportation of S‐RNase into pollen tubes. Plant J., 78(6), 990–1002. DOI: 10.1111/tpj.12524
  • Meng, D., Gu, Z., Yuan, H., Wang, A., Li, W., Yang, Q., Zhu, Y., Li, T. (2014b). The microtubule cytoskeleton and pollen tube Golgi vesicle system are required for in vitro S-RNase internalization and gametic self-incompatibility in apple. Plant Cell Physiol., 55(5), 977–989. DOI: 10.1093/pcp/pcu031
  • Okada, K., Tonaka, N., Moriya, Y., Norioka, N., Sawamura, Y., Matsumoto, T., Nakanishi, T., Takasaki-Yasuda, T. (2008). Deletion of a 236 kb region around S4-RNase in a stylar-part mutant S4sm-haplotype of Japanese pear. Plant Mol. Biol., 66(4), 389–400. DOI: 10.1007/s11103007-9277-1
  • Ortega, E., Sutherland, B.G., Dicenta, F., Boskovic, R., Tobutt, K.R. (2005). Determination of incompatibility genotypes in almond using first and second intron consensus primers: detection of new S alleles and correction of reported S genotypes. Plant Breed., 124(2), 188–196. DOI: 10.1111/j.1439-0523.2004.01058.x
  • Qi, Y.-J., Wang, Y,-T., Han, Y.-X., Qiang, S., Wu, J., Tao, S.T., Zhang, S.-L., Wu, H.-Q. (2011). Self-compatibility of ‘Zaoguan’ (Pyrus bretschneideri Rehd.) is associated with style-part mutations. Genetica, 139(9), 1149–1158. DOI: 10.1007/s10709-011-9617-6
  • Qin, X., Liu, B., Soulard, J., Morse, D., Cappadocia, M. (2006). Style-by-style analysis of two sporadic self-compatible Solanum chacoense lines supports a primary role for S-RNases in determining pollen rejection thresholds. J. Exp. Bot., 57(9), 2001–2013. DOI: 10.1093/jxb/erj147
  • Qu, H.-y., Zhang, Z., Wu, F., Wang, Y. (2016a). The role of Ca2+ and Ca2+ channels in the gametophytic self-incompatibility of Pyrus pyrifolia. Cell Calcium, 60(5), 299–308. DOI: 10.1016/j.ceca.2016.06.006
  • Qu, H., Xing, W., Wu, F., Wang, Y. (2016b). Rapid and inexpensive method of loading fluorescent dye into pollen tubes and root hairs. PloS One, 11(4), e0152320. DOI: 10.1371/journal.pone.0152320
  • Roldán, J.A., Rojas, H.J., Goldraij, A. (2012). Disorganization of F-actin cytoskeleton precedes vacuolar disruption in pollen tubes during the in vivo self-incompatibility response in Nicotiana alata. Ann. Bot., 110(4), 787–795. DOI: 10.1093/aob/mcs153
  • Sassa, H., Hirano, H., Ikehashi, H. (1993). Identification and characterization of stylar glycoproteins associated with self-incompatibility genes of Japanese pear, Pyrus serotina Rehd. Mol. Gen. Genet. (MGG), 241(1–2), 17– 25. DOI: 10.1007/bf00280196
  • Silva, N., Goring, D. (2001). Mechanisms of self-incompatibility in flowering plants. Cell. Mol. Life Sci. (CMLS), 58(14), 1988–2007. DOI: 10.1007/PL00000832
  • Sonneveld, T., Robbins, T., Bošković, R., Tobutt, K. (2001). Cloning of six cherry self-incompatibility alleles and development of allele-specific PCR detection. Theor. Appl. Genet., 102(6–7), 1046–1055. DOI: 10.1007/ s001220000525
  • Suassuna, T., Bruckner, C.H., Carvalho, R., de, Borém, A. (2003). Self-incompatibility in passionfruit: Evidence of gametophytic-sporophytic control. Theor. Appl. Genet., 106(2), 298–302. DOI: 10.1007/s00122-002-1103-1
  • Sundberg, E., Østergaard, L. (2009). Distinct and dynamic auxin activities during reproductive development. Cold Spring Harbor Perspect. Biol., 1(6), a001628. DOI: 10.1101/cshperspect.a001628
  • Tao, R., Watari, A., Hanada, T., Habu, T., Yaegaki, H., Yamaguchi, M., Yamane, H. (2007). Self-compatible peach (Prunus persica) has mutant versions of the S haplotypes found in self-incompatible Prunus species. Plant Mol. Biol., 63(1), 109–123. DOI: 10.1007/s11103-0069076-0
  • Ushijima, K., Yamane, H., Watari, A., Kakehi, E., Ikeda, K., Hauck, N.R., Iezzoni, A.F., Tao, R. (2004). The S haplotype‐specific F‐box protein gene, SFB, is defective in self‐compatible haplotypes of Prunus avium and P. mume. Plant J., 39(4), 573–586. DOI: 10.1111/j.1365313X.2004.02154.x
  • Wang, C.-L., Wu, J., Xu, G.-H., Gao, Y.-b., Chen, G., Wu, J.-Y., Wu, H.-q., Zhang, S.-L. (2010). S-RNase disrupts tip-localized reactive oxygen species and induces nuclear DNA degradation in incompatible pollen tubes of Pyrus pyrifolia. J. Cell Sci., 123(24), 4301–4309. DOI: 10.4161/psb.6.3.14386
  • Wang, P., Shi, T., Gao, Z., Zhang, Z., Zhuang, W. (2012). Insertion mutation of pollen SFB gene in self-compatibility of Japanese apricot cultivars native to China. Acta Hortic. Sinica (Chinese), 39(3), 453–460.
  • Wu, J., Li, M., Li, T. (2013a). Genetic features of the spontaneous self-compatible mutant, ‘Jin Zhui’ (Pyrus bretschneideri Rehd.). PloS One, 8(10), e76509. DOI: 10.1371/journal.pone.0076509
  • Wu, J., Gu, C., Khan, M.A., Wu, J., Gao, Y., Wang, C., Korban, S.S., Zhang, S. (2013b). Molecular determinants and mechanisms of gametophytic self-incompatibility in fruit trees of Rosaceae. Critical Rev. Plant Sci., 32(1), 53–68. DOI: 10.1080/07352689.2012.715986
  • Xue, X.M., Wang, J.Z., Zhang, A.N., Chao, L.U. (2008). Effects of plant growth regulating substances on pollen germination and tube growth in Chaohong peach. J. Northwest A & F Univ., 36(4), 123–129. DOI: 10.2967/ jnmt.107.044081
  • Yaegaki, H., Shimada, T., Moriguchi, T., Hayama, H., Haji, T., Yamaguchi, M. (2001). Molecular characterization of S-RNase genes and S-genotypes in the Japanese apricot (Prunus mume Sieb. et Zucc.). Sex. Plant Reprod., 13(5), 251–257. DOI: 10.1007/s004970100064
  • Yang, G.-l., Qin N., Z.-q., Chen, J. (2010). Effects of Plant Growth Regulator on Pollen Germination and Pollen tube Growth of Whangkeumbae (Pyrus pyrifolia). Seed (Chinese), 7(29), 39–41. DOI: 10.3724/ SP.J.1011.2010.01385
  • Yang, L.I., Chang long, L.I., Wang, J., Yan, G.H., Zhang, X.M., Wei, L.I., Zhang, K.C., Tian zhong, L.I. (2015). Research of Relationship Between Sweet Cherry Lapins Self-compatibility and SFB4′ Gene. Acta Hortic. Sinica (Chinese), 42, 1251–1259.
  • Zhang, S., Fang, J., and Yang, J. (2001). Study on the genetics of the fruit self-incompatibility and its physiological mechanism. J. Fruit Sci. (Chinese), 18(1), 49–52.
  • Zhang, S., Yang, J., Li, X., Hiratsuka, S., Ngwela, J. (2002). Differences of S-glycoprotein Content in the Styles among Pear Cultivars Differing in Self-incompatible Strength. Acta Hortic. Sinica (Chinese), 29(2), 165–167. DOI: 10.1006/jfls.2001.0409.
  • Zhang, S.J., Huang, S.X., Heng, W., Wu, H.Q., Wu, J., Zhang, S.L. (2015). Identification of S-genotypes in 17 Chinese cultivars of Japanese plum (Prunus salicina Lindl.) and molecular characterisation of 13 novel S-alleles. J. Hortic. Sci. Biotechnol., 83(5), 635–640. DOI: 10.1080/14620316.2008.11512435
  • Zhang, S.L., Hiratsuka, S. (1999). Variations in S-protein levels in styles of Japanese pears and the expression of self-incompatibility. J. Jpn. Soc. Hortic. Sci., 68(5), 911–918. DOI:10.2503/jjshs.68.911

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f5a75e74-4286-47dd-9ac2-99ace8466bdf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.