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A b s t r a c t. Cocoa remains in the same field for decades, 
resulting in plantations dominated with aging trees growing on 
variable and depleted soils. We determined the spatio-temporal 
variability of key soil properties in a (5.81 ha) field from the 
International Cocoa Genebank, Trinidad using geophysical 
methods. Multi-year (2008-2009) measurements of apparent elec-
trical conductivity at 0-0.75 m (shallow) and 0.75-1.5 m (deep) 
were conducted. Apparent electrical conductivity at deep and 
shallow gave the strongest linear correlation with clay-silt content 
(R = 0.67 and R = 0.78, respectively) and soil solution electrical 
conductivity  (R  =  0.76 and R = 0.60, respectively). Spearman 
rank correlation coefficients ranged between 0.89-0.97 and 0.81-
0.95 for apparent electrical conductivity at deep and shallow, 
respectively, signifying a strong linear dependence between meas-
urement days. Thus, in the humid tropics, cocoa fields with thick 
organic litter layer and relatively dense understory cover, experi-
ence minimal fluctuations in transient properties of soil water and 
temperature at the topsoil resulting in similarly stable apparent 
electrical conductivity at shallow and deep. Therefore, apparent 
electrical conductivity at shallow, which covers the depth where 
cocoa feeder roots concentrate, can be used as a fertility indicator 
and to develop soil zones for efficient application of inputs and 
management of cocoa fields. 

K e y w o r d s: apparent electrical conductivity, electromag-
netic-induction, humid tropics, spatial patterns, temporal stability

INTRODUCTION

Cocoa (Theobroma cacao L.) plantations have a prob-
lem of within-field yield variability which may originate 
form spatial variation is soil properties (Eneje et al., 2012; 
Obalum et al., 2013). Once established, cacao remains in 
the same field for decades, therefore cocoa fields are domi-
nated with aging trees growing on variable and depleted 

soils (Snoeck et al., 2010). In Trinidad and Tobago like 
many cocoa producing countries, increase in cocoa pro-
duction is mainly due to expansion of existing farms or 
creation of new farms rather than increase in yield per 
unit area (Gockowski, 2007; Snoeck et al., 2010).  While 
technological approaches to address within-field variabi-
lity have resulted in stupendous increase in yield per unit 
area in the production of other crops, cocoa production still 
relies on inefficient and outdated traditional production and 
management methods that do not take into account within-
field soil variability. Uniform management of large cocoa 
plantations have resulted in less than optimum yields and 
economic returns due to nutrient deficiencies as well as 
excessive fertilizer application that may potentially reduce 
environmental quality (Schumann et al., 2003). Therefore, 
there is an emerging need for cocoa producers to increase 
input efficiency, improve the economic margins of crop 
production, and reduce environmental risks, which can be 
achieved if site-specific precision management of planta-
tions is employed. 

Precision agriculture seeks to develop agronomic stra-
tegies to manage spatially variable fields more efficiently 
by developing management zones or subregions of a field 
with homogeneous yield-limiting factors (Doerge, 1999; 
Rossi et al., 2013). This holistic system approach depends 
on understanding and accurately identifying the underly-
ing factors responsible for variation in crop yield (Mann et 
al., 2011). Since soils and their properties play a distinctive 
role in determining the productivity of agricultural fields, 
once a sound understanding of the within-field variabi-
lity of soil physicochemical properties in cocoa plantations 
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is established, management zones can be developed and 
recommendations made for varying inputs. Apparent soil 
electrical conductivity (ECa) has shown great potential for 
identifying yield limiting soil properties and used success-
fully to develop management zones (Mann et al., 2011; 
Moral et al., 2010).  

Electromagnetic induction (EMI) sensors such as 
DUALEM-1S EC meter employ geophysical imaging tech-
niques to rapidly, non-invasively measure spatial variations 
of soil ECa (Atwell et al., 2013; Bréchet et al., 2012; Rossi 
et al., 2013; Wuddivira et al., 2012). Apparent soil electri-
cal conductivity correlates with va​rious physicochemical 
soil properties such as salinity (Rhoades et al., 1999), clay 
content (Triantafilis and Lesch, 2005; Wuddivira et al., 
2012), water content (Haimelin, 2008) and carbon content 
(Martinez et al., 2009). Recently, Atwell et al. (2013) and 
Bréchet et al. (2012) showed that under humid tropical 
conditions, variation in ECa was influenced by temporal 
changes in soil moisture content, spatial variation of clay-
silt mineral content, soil solution electrical conductivity 
(ECe) and soil water repellency. Thus, EMI sensors pro-
vide the prospect of cost effectively collecting dense spatial 
data, combining sufficient scale triplet of spacing, extent 
and support to capture small and large scale variability of 
soil properties (Atwell et al., 2013). 

Electromagnetic induction measurements using 
DUALEM-1S EC meter are sensitive to the upper 0-0.75 m 
for ECas and the lower 0.75-1.5 m for ECad, making it espe-
cially beneficial to management zone development in cocoa 
plantations, since cocoa trees obtain moisture and nutrients 
from a mat of lateral roots which lie in the top 0.2 m (Wood 
and Lass, 1985). Although, researchers have investigated 
the spatio-temporal stability of ECa in temperate regions 
(King et al., 2001; Nehmdahl and Greve, 2001), there has 
been limited research on tropical soils (Robinson et al., 
2009). Even so, there are no reports of studies on cocoa soils 
using geophysical imaging to assess the temporal stability 
of spatial patterns of ECa to develop management zones. 
Temporal stability is important in order to make mana- gerial 
agricultural decisions based on spatial variability. King 
et al. (2001) and Nehmdahl and Greve (2001) both noted 
that in order to characterize ECa, multiple surveys yielding 
similar patterns over time, regardless of external factors, 
should be undertaken. This is of vital importance if zones 
developed based on ECa patterns are to be used to manage 
the field for multiple years (Farahani and Buchleiter, 2004), 
as would be the case for cocoa plantations.

Farahani and Buchleiter (2004) compared the stability 
of ECas and ECad in three irrigated sandy fields in eastern 
Colorado and found ECad to be more temporally stable than 
the corresponding ECas. This was expected as the top soil 
layer is subjected to more fluctuation in transient properties 
such as water content (WC) and temperature. The magnitude 
of fluctuation depends on climatic factors (rainfall and tem-
perature) and the type of crop cover. Fluctuations in the top 

soil layer will therefore be more pronounced in semi-arid 
regions and in fields cultivated to annual crops resulting in 
more temporally unstable ECas than in the humid tropics in 
fields grown to permanent tree crops. We hypothesize that 
due to the perennial nature of cocoa trees, thick organic lit-
ter and understory cover coupled with little fluctuation in 
soil water and temperature in the humid tropics, ECas will 
be as temporally stable as ECad. The objectives of our study 
were to:
-- investigate the temporal stability of spatial patterns of 

apparent soil electrical conductivity, 
-- determine which soil properties contribute to electromag-

netic induction signals in a humid tropical cocoa field.

MATERIALS AND METHODS

The study was conducted at the International Cocoa 
Genebank, Trinidad (ICG, T), 10° 34’ 39” N, 61° 18’ 0” W 
(Fig. 1a). The ICG, T consists of 33 ha of land divided into 
five fields (Fig. 1b). Cocoa plants were established between 
1986 and 1990. Permanent shade was provided by Erythina 
spp. and temporary shade by the original ‘old’ cocoa trees 
and non-commercial bananas (Musa acuminate). Our study 
was conducted on a 5.81 ha field (blocks 6A and 6B) that 
is prone to seasonal flooding by the Caroni River, which 
may redistribute soil particles, alter the absolute magni-
tude of ECa and flush any fertilizer salts from the soil that 
may build up from previous growing seasons. The ICG, 
T is subjected to humid tropical conditions, with mean 
annual rainfall of 2000 mm falling mainly between July 
and December (wet season) and a marked dry season from 
January to June, with less than 400 mm of rain (Granger, 
1983).  Average monthly temperatures range from 25.7 to 
28.9°C, with an average monthly relative humidity of 81%. 
The ICG, T is sited on a fine silt-clay alluvium belonging to 
the Cunupia clay soil series (Inceptisol), which has restrict-
ed internal drainage and a flat topology. 

The DUALEM-1S EC meter (Dualem, Milton, ON, 
Canada) described in Abdu et al. (2007) was used to carry 
out ECa mappings. The  sensor was connected to an Archer 
Ultra Rugged-Pda field computer (Juniper Systems, Logan, 
UT) running HGIS software (Starpal, Ft, Collins, CO) and 
a GPS (REB-12R, RoyalTek, Tao Yuan, Taiwan) contain-
ing a SirfIII chipset. The sensor-field computer-GPS setup 
provided spatially exhaustive geo-referenced readings for 
ECas and ECad. Using the time lapse approach (Robinson 
et al., 2009), a total of nine ECa surveys were completed 
between 2009 and 2010. This was done to capture multi-
year spatio-temporal and seasonal changes of ECa in the 
cocoa field. The EMI instrument was held constantly at 
approximately 0.25 m above the soil surface and measure-
ments were taken at 2 s intervals along parallel lines in both 
the north-south and east-west direction approximately 20 m 
apart (Fig. 1c). 
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The first EMI image was made on March 13, 2009 in the 
middle of the dry season. The next two images were taken 
towards the end of the dry season on the April 28 and May 
18, 2009. Wet season surveys were performed on June 30, 
August 24, September 26 and November 27, 2009. The final 
two images were obtained during the dry season in 2010 on 
January 21 and June 30. Soil water content, measured with 
a theta probe (DeltaT Devices, Burwell, Cambridge, United 
Kingdom) and soil temperature, measured with a soil tem-
perature sensor (Novel Ways Ltd, Hamilton, New Zealand) 
were recorded before and after the first three ECa surveys 
(data not shown). The soil temperature did not change from 
30oC, which is consistent for tropical climates (Robinson et 
al., 2009). Therefore, no temperature correction was need-
ed for the data.

Data were downloaded from the field computer and 
subjected to QA/QC analysis to recognize and exclude data 
points that where obtained while the surveyor was station-
ary. Using a time-series view of the data, ECa values were 
then checked for stability and any erratic values were elim-
inated. As a quality control measure, inconsistent values 
caused by materials such as buried metal fragments, wires 
and pipes were identified and removed from the dataset. 

The datasets were normal score transformed using 
S-GeMS (Remy, 2005) to prepare the data for a kriging 
process. The underlying assumption of kriging was that the 
data were normally distributed (Goovaerts, 2010). The nor-
mal score transformation was useful in transforming data 
with large outlying values to provide a  normal distribution 
with a mean of 0 and a variance of 1. The normal score trans-
form function was derived by matching the original skewed 
cumulative distribution function (cdf) to a standard normal 
cdf. Block kriging was performed on each dataset by fitting 
them with variograms and kriging them on a 5 x 5 m grid 
using VESPER (Walter et al., 2001). The final ECa maps 
were created in S-GeMS, where the kriged data were back 
transformed. 

Vachaud et al. (1985) used the differences between 
individual and spatial average values and Spearman rank 
correlation to characterize the temporal stability of para-
metric values. The method depends on a spatial location 
keeping its rank in the cdf for different sampling times 
(Vachaud et al. 1985). Since the study site was topologically 
flat, the supposition was that EMI mapping can capture the 
dominant intrinsic physical soil property through repeated 
mapping, by employing a temporal stability analysis tech-
nique. Ranking and/or time-lapse ECa images were used 
successfully by Robinson et al. (2009) to identify hydro-
logic subsurface patterns, soil texture, and water-holding 
capacity. The modified temporal and rank stability proce-
dure described by Robinson et al. (2009) was employed 
in this study to determine the stability of ECas and ECad 
across the field.

Prior to soil sample extraction at the depth of 30 cm from 
120 random sampling sites using a Dutch Cutting Auger, 
EMI signal (ECa) and GPS coordinates were recorded for 
each sites. Soil samples were transported back to the lab in 
Ziploc plastic bags to prevent moisture loss. Sub-samples 
of approximately 105 g of soil (fresh weight) were taken 
from each sample and analysed for  gravimetric water con-
tent (θg) by recording dry mass after oven-drying at 105º 
C until constant weight was achieved. The rest of the soil 
was air dried, and stones and organic debris such as roots 
were removed from the samples. The samples were then 
crushed using a mortar and a pestle and passed through a 2 
mm sieve. Particle size distribution, ECe and organic mat-
ter content (OM) were analysed using standard methods. 
pH measurements were made in 0.01 M CaCl2 (soil to solu-
tion ratio 1:1) using a pH meter equipped with combination 
gel-filled glass electrode. 

Fig. 1. (a) Map of Trinidad showing location of ICG,T (b) detailed schematic of 318 ICGT (c) apparent electrical conductivity (ECa) 
mapping path and sample locations. 
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RESULTS AND DISCUSSION

Summary statistics of ECa are presented in Table 1. 
Mean ECa values varied from 10.98 to 21.85 mS m-1 for 
ECad and 3.77-17.29 mS m-1 for ECas. ECas data ranged 
from 1.00 to 37.10 mS m-1 while ECad ranged from 0.63 to 
86.10 mS m-1. June 2009 exhibited very close mean ECas 
and ECad values (Fig. 2), indicating that both depths had 
similar water content and temperatures on that day. Spatial 
variability, as quantified by coefficient of variation (CV), 
was generally high for all mapping events, ranging from 
28.91 to 55.87%. Farahani and Buchleiter (2004) report-
ed similar variation in CV in three irrigated sandy fields 
in eastern Colorado, seemingly a normal range for low 
salt systems. Both absolute and relative measures of va- 
riability such as standard deviations (Stdev, 1.73 to 9.77)  
and CV (28.91% to 55.87%) for the nine ECas and ECad  
surveys were generally high at all sites,  indicating that 
rainfall and temperature fluxes affected the variability of 
ECa among survey dates. This interpretation is supported 
by the Spearman rank correlation coefficient (rs) of ECa 
measurements (Table 2), where correlations are high for the 
wettest months surveyed. ECas had lower means, standard 
deviations, and CVs than ECad indicating less variability, 
which is not expected due to more exposure to climatic and 
anthropogenic disturbances.  Moderate (0.36 < |R2| < 0.64) 
to strong (|R2| > 0 .64)  positive coefficients of determina-
tion, R2 (Fig. 3) were observed between ECas and ECad for 
all measurement days, suggesting homogeneity between 

shallow and deep horizons, although this is partly due 
to deep ECa integrating the 1.5 m soil that includes the 
0.75 msoil layer represented by ECas (Farahani and 
Buchleiter, 2004).  

The normal score semivariograms in Fig. 4 demonstrate 
strong spatial structure and correlation. ECad variograms 
had a slightly different structure than the ECas models. 
ECas models had slightly larger nugget, lower sill and ge- 
nerally shorter range values (except for April and May 2009) 
than corresponding ECad models (Table 3) suggesting ECas 
is less spatially continuous than ECad. The least error in the 
measured ECa was observed in the driest month of January 
2010, which had the smallest nugget effect for both ECas 
and ECad. Spherical semivariograms were fitted to both 
ECas and ECad, because spherical models exhibit linear 
behaviour at the origin and are appropriate for represent-
ing properties with a higher level of short-range variability 
(Bohling, 2005). The different environmental conditions 
under which data was collected had only minor effects on 
the spatial structure of the ECa semivariograms signify-
ing that spatial dependence isn’t significantly affected by 
ephemeral factors, although absolute values may change.

Kriged ECas and ECad maps for April 2009 and April 
2010 (same month, consecutive years), August 2009 
(wettest survey month) and January 2010 (driest survey 
month) are presented in Fig. 5. Visual inspection of all 
maps reveals a general pattern where a zone with higher 
ECa approximately 50 m x 100 m was observed. For all 

T a b l e  1. Summary statistics of deep (ECad) and shallow (ECas) apparent soil electrical conductivity

Sampling 
date

ECad (mS m-1) ECas (mS m-1)

Min Max Mean Std CV Min Max Mean Std CV

Dry season (2009)

March 4.50 48.62 20.84 8.43 40.43 3.10 23.50 10.66 3.44 32.30

April 1.26 86.10 17.40 8.70 49.99 1.80 13.60 6.26 2.46 39.28

May 0.65 42.34 14.84 7.46 50.27 1.69 16.70 6.02 2.25 37.35

Wet season (2009)

June 4.08 54.07 17.71 8.40 47.42 6.40 37.10 17.29 6.28 36.35

August 7.30 49.04 21.85 8.20 37.53 5.40 26.00 12.59 3.64 28.91

September 2.13 53.26 21.23 9.15 43.09 4.80 31.80 11.68 3.66 31.34

November 0.63 57.82 21.43 9.77 45.58 6.60 34.80 13.70 4.04 29.51

Dry season (2010)

January 1.74 44.95 17.12 8.09 47.22 2.30 18.90 7.36 2.61 35.44

April 1.30 26.35 10.98 6.14 55.87 1.00 9.10 3.77 1.73 45.87



ASSESSING THE TEMPORAL STABILITY OF SPATIAL PATTERNS USING GEOPHYSICS 427

ECas, R = 0.23) and θg (ECad,  R = 0.28; ECas, R = 0.25) 
were weak at both depths, they were found to be significant 
at the 5% level (Table 5). Coefficient of variability (CV) 
for soil properties indicated significant spatial variability, 
suggesting the convenience of defining management zones 
(Moral et al., 2010).

Given the varying texture and ECe across the field 
as indicated by the CVs, clay-silt content and ECe were 
expected to give the strongest correlations with the ECa 
signal. Although ECa is known to be strongly dependent 
on water content, the sampling on a single day, at a point in 
time, does not capture the temporal change in water content 
given different texture-dependent calibrations (Robinson 
et al., 2009). Stepwise multiple regressions indicated that 
the most important predictors of ECad were ECe, clay-silt 
content and OM, in that order, whereas the most important 
predictors of ECas were clay-silt content, then ECe followed 
by θg. The regression model suggested that ECe and clay-
silt content dominated the ECad signal response accounting 
for 67% of its variability, whereas clay-silt content alone 
explained 61% of the ECas signal response. Due to more 
exposure to climatic and anthropogenic disturbances, 
including frequent flooding, ECas response was dominated 
by varying soil particle size distributions across the field. 
Concomitantly, the ECad signal was most influenced by 
ECe suggesting that salts accumulate as soil depth increas-
es. The ICG,T’s restricted internal drainage indicates clay 
content increase as soil depth increases, which explains the 
increase in salt accumulation with depth. 

maps, the south-western end of the field had the lowest ECa 
values and the north-eastern side had the highest. Maps of 
April 2009 and April 2010 showed a lot of variability, espe-
cially at the deeper depths. Both surveys were done during 
a rainfall event and the pattern was interpreted to indicate 
the redistribution of water, changing the soil ECa as the 
field was mapped. 

ECas produced unimodal distributions (except June 
2009) and ECad were mildly bimodal (Fig. 6). For both 
ECas and ECad, the months with the greatest cumulative 
precipitation exhibited histograms slightly skewed to the 
right while the driest months were highly skew to the right, 
indicating that the field should be mapped when soil water 
content is near field capacity. June was the only ECas data-
set to have a bimodal distribution, supporting the inference 
that in that month, both depths experienced similar water 
and temperature conditions, which would also explain the 
similar means for ECas and ECad. 

Data for soil physicochemical properties are presented 
in Table 4. The soil samples were acidic with a mean pH 
value of 4.4. ECe averaged 126.4 mS m-1 and ECa was 
observed to increase with depth. Thus,  ECas averaged 
10.2 mS m-1 and ECad averaged 17.6 mS m-1. The corre-
lation coefficients between variables is shown in Table 5. 
When the correlations of the soil properties and ECa were 
explored, both ECad and ECas showed strong positive linear 
correlation with clay-silt content (R = 0.67 and R = 0.78 
respectively) and ECae (R = 0.76 and R = 0.60, respectively). 
Although correlations of ECa with OM (ECad,  R = 0.20; 

Fig. 2. Mean shallow (ECas) and deep (ECad) apparent electrical conductivity (ECa) as functions of survey dates. Error bars are standard 
error of the mean.

Date
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Visual inspection of the kriged clay-silt content map 
(Fig. 7), and kriged ECa maps (Fig. 5), showed remarkably 
similar spatial patterns where the south-western end of the 
field had the lowest ECa and fine fraction values and the 
north-eastern side had the highest. This distribution pattern 
suggested that high ECa readings were consistently found 
in areas with finer texture, indicating that ECa can be used 
to interpret clay-silt content throughout the field site. 

Spearman rank correlation coefficient was used to get 
a quantitative measure of the time stability of spatial loca-
tions between different mapping days (Table 2). The three 
wettest months (August, September and November 2009) 
had the highest Spearman’s rank correlation coefficients 
for both ECas and ECad. The highest occurred between 
August 2009 and November 2009 (ECad) and August 2009 
and September 2009 (ECas) with rs values of 0.97 and 0.95, 

respectively. The fact that the correlations are high for the 
wettest months surveyed, suggest similar ECas and ECad 
responses with the increase in water content. 

Figure 8 indicated locations that are consistently higher 
than the field ECa average and locations that are consistent-
ly lower than the field average. The lowest ranked spatial 
locations were 5.3 and 12.8 mS m-1 below the averaged mean 
ECa of the nine mapping events for ECas and ECad, 
respectively. While the highest ranked zones were 9.6 
and 30.7 mS m-1 above the averaged mean for ECas and 
ECad, respectively. The temporal stability maps do indi-
cate a general transition in soil texture across the field with 
a combined decrease in ECe and clay-silt content from the 
northern to the southern end of the field, as confirmed by 
sampled soil. The textural variation may be as a result of 
seasonal flooding of the study site. Beside leaching and 
temporary increases in soil electrical conductivity, flooding 

T a b l e  2. Spearman rank correlation coefficients deep (ECad) and shallow (ECas) apparent soil electrical conductivity

2009 2010

March April May June August September November January April

 Deep apparent electrical conductivity (ECad)

2009

March 1

April 0.945 1

May 0.905 0.958 1

June 0.903 0.950 0.943 1

August 0.935 0.956 0.949 0.906 1

September 0.919 0.942 0.913 0.890 0.970 1

November 0.916 0.923 0.908 0.888 0.972 0.970 1

2010
January 0.914 0.939 0.938 0.927 0.957 0.932 0.954 1

April 0.919 0.946 0.943 0.927 0.925 0.919 0.919 0.949 1

Shallow apparent electrical conductivity (ECas)

2009

March 1

April 0.892 1

May 0.860 0.920 1

June 0.805 0.856 0.830 1

August 0.866 0.866 0.887 0.824 1

September 0.855 0.857 0.873 0.834 0.951 1

November 0.859 0.835 0.852 0.814 0.932 0.944 1

2010
January 0.819 0.823 0.862 0.824 0.870 0.867 0.922 1

April 0.780 0.867 0.886 0.853 0.811 0.844 0.826 0.904 1
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Fig. 3. Correlation coefficients of monthly shallow vs. deep apparent electrical conductivity values in relation to cumulative monthly 
precipitation.

Fig. 4. Semivariograms for the kriged aparent electrical conductivity for (a) deep and (b) shallow data. All variograms were fitted with 
spherical models.
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also redistributes soil sediments, by depositing the finest 
textured soil closer to the river basin, drains and depressions 
within the field. The standard deviation of the temporal sta-
bility map for the deep ECa measurements (Fig. 8) shows 
strong patterns. The locations of greatest change are  asso-
ciated with particular features of the field, such as a small 
shed along the eastern field boundary and a  network of 
deep drains in the center of the field, where leached salts 
accumulated.

Both the shallow and deep ECa exhibited large-scale 
similarly stable temporal patterns, thus both ECa depths can 
be used to map the study site, however, since the feeder 
roots of cocoa is located in the ECas  range, ECas would 
be better suited for soil management zone delineation. The 
results suggest that measurements of ECa patterns are inde-
pendent of time and depth of measurement. Thus single 
ECa mapping should suffice for the delineation of stable 
management zones in cocoa fields.

T a b l e  3. Variogram attributes ECad spherically fitted variogram models and ECas spherically fitted variogram models

2009 2010

March April May June August September November January April

Deep apparent electrical conductivity (ECad)

Nugget 0.07 0.03 0.08 0.04 0.05 0.06 0.05 0.01 0.03

Sill 1.06 1.16 0.98 0.90 1.02 1.02 1.15 0.91 1.30

Range 235.4 268.0 197.7 170.8 205.50 226.3 245.3 161.2 274.4

Shallow apparent electrical conductivity (ECas)

Nugget 0.14 0.09 0.13 0.07 0.13 0.10 0.11 0.03 0.12

Sill 0.63 0.94 0.68 0.52 0.57 0.45 0.60 0.48 0.68

Range 218.3 333.90 245.0 106.8 160.70 170.5 181.2 119.7 220.0

Fig. 5. Kriged apparent electrical conductivity (ECa) shallow and deep maps for selected months.
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CONCLUSIONS

1. Our results showed a positive linear dependence of 
both shallow apparent soil electrical conductivity and deep 
apparent soil electrical conductivity on clay-silt content 
and soil solution electrical conductivity. Thus, apparent 
soil electrical conductivity signals can be used to interpret 
clay-silt content, soil solution electrical conductivity and 
delineate management zones. 

2. The significant correlations between apparent soil 
electrical conductivity and variables related to soil fertility 
such as organic matter, pH and gravimetric water content 
indicate that apparent soil electrical conductivity signals 
can also be used as soil fertility indicators.  

3. Both the shallow apparent soil electrical con- 
ductivity and deep apparent soil electrical conducti- 
vity exhibited large-scale spatio-temporal pattern, thus both 

Fig. 6. Frequency distributions of kriged apparent electrical conductivity (ECa) for the study site: a – ECa deep distribution and b – ECa 
shallow distribution.

T a b l e  4. Descriptive statistics of soil properties

Variable Mean Median Standard 
deviation Minimum Maximum Coefficient of 

variance (%)

ECad (mS m-1) 17.8 5.2 1.2 35.0 29.2

ECas (mS m-1) 10.2 10.1 2.9 4.6 19.3 28.4

θg (g g-1) 0.28 0.28 0.10 0.18 0.42 35.7

Clay-silt (%) 79.1 77.5 24.5 40.0 113.4 31.0

pH 4.4 4.4 0.4 3.4 6.7 22.6

ECe (mS m-1) 126.4 123.1 34.1 60.0 283.2 27.0

Organic matter (%) 2.5 2.4 0.6 1.0 3.1 22.1
 
ECad – deep apparent electrical conductivity;  ECas – shallow apparent electrical conductivity; θg – gravimetric water content; ECe – soil 
solution electrical conductivity.

a

b
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measurements would be suitable to delineate management 
zones in cocoa fields in the humid tropic. If fields are to 
be zoned based on the apparent soil electrical conductivi- 
ty measurements, however, shallow apparent soil electrical 
conductivity would be preferable, since the feeding roots of 
cocoa trees are concentrated in the upper 0.2 m of the soil. 

4. The multi-mapping strategy using electromagnetic 
induction provides useful information for delineating soil 
textural boundaries without the costly and time demanding 
soil sampling, instrument calibration and remapping. 

5. For non-saline soils planted with perennial crops such 
as cocoa, the thick organic litter and understory cover cou-
pled with humid tropical climate can minimize fluctuation 
in transient properties (soil water and temperature) result-
ing in apparent soil electrical conductivity signals that are 
time and depth independent. 

T a b l e  5. Correlation matrix amongst soil properties in the study area
 

ECad (mS m-1) ECas (mS m-1) θg (g g-1) Clay-silt (%) pH ECe (mS m-1)

ECad (mS m-1) 1

ECas (mS m-1) 0.690 1

θg (g g-1) 0.278 0.250 1

Clay-silt (%) 0.673 0.783 0.274 1

pH 0.505 0.396 0.007 0.440 1

ECe (mS m-1) 0.763 0.603 0.158 0.473 0.634 1

Organic matter (%) 0.201 0.232 0.330 0.221 0.175 0.094

Explanations as in Table 4.

Fig. 7. Kriged spatial map of clay-silt % in the study site.

Fig. 8. Shallow and deep temporal stability maps of the nine apparent electrical conductivity (ECa) surveys. The light areas depict 
locations where the ECa is consistently higher than the field average, and the dark areas depict locations where the ECa is consistently 
lower than the field average. The light areas in the standard maps indicate the locations undergoing the most change. These locations 
are associated with a network of drains to the center of the field and a shed located along the eastern boundary.
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6. One mapping is enough to determine underlying spa-
tial patterns of properties related to soil fertility for efficient 
application of inputs and management of cocoa fields. 
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