PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 58 | 4 |

Tytuł artykułu

Release of phenolic compounds from bean flour, bean-derived chips and black chokeberry juice and changes in their antioxidant activity during digestion in an in vitro gastrointestinal model

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
An in vitro gastrointestinal model, which simulates the conditions of the human digestive tract, was used in this work to determine the potential antioxidant activity in Jaś Karłowy bean flour, extruded Jaś Karłowy bean products (chips) and black chokeberry juice. The aim of the study was to investigate changes in the level of phenolic compounds and antioxidant activity under in vitro conditions which closely resemble those occurring in the human digestive tract. We examined the effect of human fecal flora on the antioxidant activity of products undergoing digestion, which are a rich source of antioxidant compounds. Results obtained in the research indicate that the in vitro gastrointestinal tract model applied in this work can be successfully used to study changes in the level of phenolic compounds. Our observations show that digestion of Jaś Karłowy bean flour, an extruded product from bean and black chokeberry juice in the gastrointestinal tract model has an influence on the antioxidant activity and the level of phenolic compounds in these products of Jaś Karłowy bean flour, extruded product from bean and black chokeberry juice. The highest antioxidant activity, approx. 30 mg Trolox/g during the digestion process, was noted for both flour and extruded bean products. All products examined were found to stimulate the growth of intestinal microorganisms, however black chokeberry juice decreased only the growth of bacteria from the Enterococcus species.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

58

Numer

4

Opis fizyczny

p.497-501,fig.,ref.

Twórcy

autor
  • Institute of Food Technology of Plant Origin, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
autor
autor

Bibliografia

  • 1. Aherne S.A., O’Brien N.M., The flavonoids, myricetin, quercetin and rutin, protect against cholestan-3β, 5α, 6β-triol-induced toxicity in Chinese hamster ovary cells in vitro. Nutr. Res., 1999, 19, 749–760.
  • 2. Aherne S.A., O’Brien N.M., Dietary flavonols: chemistry, food content and metabolism. Nutrition, 2002, 18, 75–81.
  • 3. Aura A.M., Harkonen H., Fabritius M., Poutanen K., Development of in vitro enzymatic digestion method for removal of starch and protein and assessment of its performance using rye and wheat breads. J. Cereal Sci., 1999, 29, 139–152.
  • 4. Biedrzycka E., Bielecka M., Amarowicz R., The effect of intestinal microflora on antioxidant activity of apple juice. J. Food Lipids, 2005, 12, 261–274.
  • 5. Blake D.B., Hillman K., Fenlon D.R., The use of model ileum to investigate the effects of novel and existing antimicrobials on indigenous porcine gastrointestinal microflora using vancomycin as a sample. Anim. Feed Sci. Technol., 2003, 103, 123–139.
  • 6. B B laut M., Schoefer L., Braune A., Transformation of flavonoids by intestinal microorganisms. Int. J. Vitam. Nutr. Res., 2003, 73, 79–87.
  • 7. Cook N.C., Samman S., Flavonoids-chemistry, metabolism, cardioprotective effects, and dietary sources. Nutr. Biochem., 1996, 7, 66–76.
  • 8. Crespy V., Morand C., Besson C., Manach C., Demigne C., Remesy C., Quercetin, but not its glycosides, is absorbed from rat stomach. J. Agric. Food Chem., 2002, 50, 618–621.
  • 9. Czarnecka M., Czarnecki Z., Nowak J., Roszyk H., Effect of lactic fermentation and extrusion of bean and pea seeds on nutritional and functional properties. Nahrung, 1998, 1, 7–11.
  • 10. Day A.J., DuPont M.S., Ridley S., Rhodes M., Rhodes M.J.C., Morgan M.R.A., Williamson G., Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver β- glucosidase activity. FEB S Lett., 1998, 436, 71–75.
  • 11. Ekmekcioglu C., A physiological approach for preparing and conducting intestinal bioavailability studies using experimental systems. Food Chem., 2002, 76, 225–230.
  • 12. Garret DA, Failla M.L., Sarama R.J., Development of an in vitro digestion method to access carotenoid bioavailability from meals. J. Agric. Food Chem., 1999, 47, 4301–4309.
  • 13. Gawęcki J., Libudzisz Z., Microorganisms in food and nutrition. 2006, The August Cieszkowski Agricultural University of Poznań Press, pp. 31–40 (in Polish).
  • 14. Gil-Izquierdo A., Gil M.I., Ferreres F., Tomas-Barberan F.A., In vitro availability of flavonoids and other phenolics in orange juice. J. Agric. Food Chem., 2001, 49, 1035–1041.
  • 15. Gumienna M., Goderska K., Nowak J., Czarnecki Z., Changes in the antioxidative activities of bean products and intestinal microflora in the model of the gastrointestinal tract “in vitro”. Pol. J. Food Nutr. Sci., 2006, 56/15, SI 2, 29–32.
  • 16. Hoebler C., Lecannu G., Belleville C., Devaux M.F., Popineau Y., Barry J.L., Development of an in vitro system simulating bucco-gastric digestion to assess the physical and chemical changes of food. Int. J. Food Sci. Nutr., 2002, 53, 389–402.
  • 17. Hollman P.C.H., Hertog M.G.L., Katan M.B., Analysis and health effects of flavonoids. Food Chem., 1996, 57, 43–46.
  • 18. Hollman P.C.H., Katan M.B., Dietary flavonoids: intake, health, effect and bioavailability. Food Chem. Toxicol., 1995, 37, 937–942.
  • 19. Ioku K., Pongpiriyadacha Y., Kinishi Y., Takei Y., Nakatani N., Terao J., β-glucosidase activity in the rat small intestine toward quercetin monoglucosides. Biosci. Biotechol. Biochem., 1998, 62, 1428–1431.
  • 20. Jenner A.M., Rafter J., Halliwell B., Human fecal water content of phenolics: The extent of colonic exposure to aromatic compounds. Free Rad. Biol. Med., 2005, 38, 763–772.
  • 21. Justesen U., Arrigoni E., Electrospray ionization mass spectrometric study of degradation products of quercetin, quercetin‑3‑‑glucoside and quercetin-3-rhamnoglucoside, produced by in vitro fermentation with human faecal flora. Rapid Commun. Mass Spectrom., 2001, 15, 477–483.
  • 22. Justesen U., Arrigoni E., Larsen B.R., Amado R., Degradation of flavonoid glycosides and aglycones during in vitro fermentation with human faecal flora. Lebensm. Wiss. Technol., 2000, 33, 424–430.
  • 23. Knarreborg A., Simon M.A., Engberg R.M., Jensen B.B., Tannock G.W., Effects of dietary fat source and subtherapeutic levels of antibiotic on the bacterial community in the ileum of broiler chickens at various ages. Appl. Environ. Microbiol., 2002, 68, 5918–5924.
  • 24. Kong J.M., Chia L.S., Goh N.K., Chia T.F., Brouillard R., Analysis and biological activities of anthocyanins. Phytochemistry, 2003, 64, 923–933.
  • 25. Krul C., Luiten-Schuite A., Tenfelde A., Van Ommen B., Verhagen H., Havenaar R., Antimutagenic activity of green tea and black tea extracts studied in a dynamic in vitro gastrointestinal model. Mutat. Res., 2001, 474, 71–85.
  • 26. McDougall G.J., Dobson P., Smith P., Blake A., Stewart D., Assessing potential bioavailability of raspberry anthocyanins using an in vitro digestion system. J. Agric. Food Chem., 2005a, 53, 5896–5904.
  • 27. McDougall G.J., Fyffe S., Dobson P., Stewart D., Anthocyanins from red wine. Their stability under simulated gastrointestinal digestion. Phytochemistry, 2005b, 66, 2540–2548.
  • 28. Netzel M., Stintzing F.C., Quaas D., Stras G., Carle R., Bitsch R., Bitsch I., Frank T., Renal extraction of antioxidative constituents from red beet in humans. Food Res. Int., 2005, 38, 1051–1058.
  • 29. Neumann M., Goderska K., Grajek K., Grajek W., The in vitro models of gastrointestinal tract to study bioavailability of nutrients. Żywność. Nauka. Technologia. Jakość, 2006, 1, 30–45 (in Polish).
  • 30. Re R., Pellegirini N., Protegente A., Pannala A., Yang M., Rice‑Evans C., Antioxidant activity applying an improved ABTS radical cation decolonization assay. Free Rad. Biol. Med., 1999, 1231–1232.
  • 31. Rechner A.R., Smith M.A., Kuhnle G., Gibson G.R., Debnam E.S., Srai S.K.S., Moore K.P., Rice-Evans C.A., Colonic metabolism of dietary polyphenols: influence of structure on microbial fermentation products. Free Rad. Biol. Med., 2004, 36, 212–225.
  • 32. Scalbert A., Morand C., Manach C., Rémésy C., Absorption and metabolism of polyphenols in the gut and impact on health. Biomed. Pharmacother., 2002, 56, 276–282.
  • 33. Scalbert A., Williamson G., Dietary intake and bioavailability of polyphenols. J. Nutr., 2000, 130, 2073S-2085S.
  • 34. Schneider H., Blaut M., Anaerobic degradation of flavonoids by Eubacterium ramulus. Arch. Microbiol., 2000, 173, 71–75.
  • 35. Singelton V.L., Rossi J.A., Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 1965, 16, 144–158.
  • 36. Slimestad R., Torskangerpoll K., Nateland H.S., Johannessen T., Giske N.H., Flavonoids from black chokeberries, Aronia melanocarpa. J. Food Compos. Anal., 2005, 18, 61–68.
  • 37. Talavéra S., Felgines C., Texier O., Besson C., Lamaison J.L., Rémésy C., Anthocyanins are efficiently absorbed from the stomach in anesthetized rats. J. Nutr., 2003, 133, 4178–4182.
  • 38. Williamson G., Day A.J., Plumb G.W., Couteau D., Human metabolic pathways of dietary flavonoids and cinnamates. Biochem. Soc. Trans., 2000, 28, 16–22.
  • 39. Winter J., Moore L.H., Dowell V.R., Bokkenheuser V.D., C-ring cleavage of flavonoids by human intestinal bacteria. Appl. Environ. Microbiol., 1989, 55, 1203–1208.

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f4ded1a4-97d6-4ff6-8c7a-f33707211769
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.