PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 08 |

Tytuł artykułu

Role of salicylic acid on physiological and biochemical mechanism of salinity stress tolerance in plants

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Salinity stress is one of the major abiotic stresses affecting plant growth and productivity globally. In order to improve the yields of plants growing under salt stress bear remarkable importance to supply sustainable agriculture. Acclimation of plants to salinized condition depends upon activation of cascade of molecular network involved in stress sensing/perception, signal transduction, and the expression of specific stress-related genes and metabolites. Isolation of salt overly sensitive (SOS) genes by sos mutants shed us light on the relationship between ion homeostasis and salinity tolerance. Regulation of antioxidative system to maintain a balance between the overproduction of reactive oxygen species and their scavenging to keep them at signaling level for reinstating metabolic activity has been elucidated. However, osmotic adaptation and metabolic homeostasis under abiotic stress environment is required. Recently, role of phytohormones like Abscisic acid, Jasmonic acid, and Salicylic acid in the regulation of metabolic network under osmotic stress condition has emerged through crosstalk between chemical signaling pathways. Thus, abiotic stress signaling and metabolic balance is an important area with respect to increase crop yield under suboptimal conditions. This review focuses on recent developments on improvement in salinity tolerance aiming to contribute sustainable plant yield under saline conditions in the face of climate change.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

08

Opis fizyczny

p.2345-2353,fig.,ref.

Twórcy

autor
  • Plant Physiology Lab, Department of Botany, Udai Pratap Autonomous College, Affiliated to Mahatma Gandhi Kashi Vidyapeeth University, Varanasi 221002, Uttar Pradesh, India
autor
  • Plant Physiology Lab, Department of Botany, Udai Pratap Autonomous College, Affiliated to Mahatma Gandhi Kashi Vidyapeeth University, Varanasi 221002, Uttar Pradesh, India

Bibliografia

  • Acar O, Türkan I, Ozdemir F (2001) Superoxide dismutase and peroxidase activities in drought sensitive and resistant barley (Hordeum vulgare L.) varieties. Acta Physiol Plantarum 23:351–356
  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases in controlling oxidative stress in plants. J Exp Bot 53:1331–1341
  • Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R, Kubo A, Tanaka K (2004) Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol Plantarum 121:231–238
  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1100
  • Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis Seedlings. Plant Physiol 126: 1024–1030
  • Brodersen P, Petersen M, Nielsen HB, Zhu S, Newman MA, Shokat KM, Rietz S, Parker J, Mundy J (2006) Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J 47:532–546
  • Chen C, Dickman MB (2005) Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proc Natl Acad Sci USA 102:3459–3464
  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448
  • Coupe SA, Palmer BG, Lake JA, Overy SA, Oxborough K, Woodward FI, Gray JE, Quick WP (2006) Systemic signalling of environmental cues in Arabidopsis leaves. J Exp Bot 57:329–341
  • Cvetkovska M, Rampitsch C, Bykova N, Xing T (2005) Genomic analysis of MAP kinase cascades in Arabidopsis defense responses. Plant Mol Biol Rep 23:331–343
  • Dat JF, Lopez Delgado H, Foyer CH, Scott IM (1998) Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116:1351–1357
  • Dat JF, Pellinen R, Cotte BVD, Langerbartels C, Kangasjarvi J, Inze D, Van Breusegem F (2003) Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant Journal 33:621–632
  • Dat JF, Capelli N, Van Breusegem F (2007) The interplay between salicylic acid and reactive oxygen species during cell death in plants. In: Hayat S, Ahmad A (eds) Salicylic acid: a plant hormone. Springer, Dordrecht, pp 247–276
  • Deef HE (2007) Influence of salicylic acid on stress tolerance during Seed germination of Triticum aestivum and Hordeum vulgare. Adv Biological Res 1:40–48
  • Demiral T, Türkan I (2004) Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? J Plant Physiol 161:1089–1100
  • Demiral T, Türkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Env Exp Bot 53:247–257
  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9
  • Dong X (2004) NPR1, all things considered. Curr Opin Plant Biol 7:547–552
  • Durner J, Klessig DF (1996) Salicylic acid is a modulator of tobacco and mammalian catalases. J Biol Chem 271:28492–28501
  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209
  • El Tayeb MA (2005) Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul 45:215–224
  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defence signaling. Curr Opin Plant Biol 10:366–371
  • Fobert PR, Despres C (2005) Redox control of systemic acquired resistance. Curr Opin Plant Biol 8:378–382
  • Garreton V, Carpinelli J, Jordana X, Holuigue L (2002) The as-1 promoter element is an oxidative stress-responsive element and salicylic acid activates it via oxidative species. Plant Physiol 130:1516–1526
  • Gautam S, Singh PK (2009) Salicylic acid-induced salinity tolerance in corn grown under NaCl stress. Acta Physiol Plantarum 31:1185–1190
  • Gibon I, Bessieres MA, Larher F (1997) Is glycine betaine a noncompatible solute in higher plants that do not accumulate it? Plant, Cell Environ 20:329–340
  • Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164:728–736
  • Hasegawa PM, Bressan RA, Jhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499
  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Env Exp Bot 68:14–25
  • Holuigue L, Salinas P, Blanco F, Garreton V (2007) Salicylic acid and reactive oxygen species in the activation of stress defense genes. In: Hayat S, Ahmad A (eds) Salicylic acid: a plant hormone. Springer, Dordrecht, pp 197–246
  • Hussain K, Nisar MF, Majeed A, Nawaz K, Bhatti KH, Afghan S, Shahazad A, Hussnian SZ (2010) What molecular mechanism is adapted by plants during salt stress tolerance? Afr J Biotechnol 9:416–422
  • Karasavina MS (2007) Effect of salicylic acid on solute transport in plants. In: Hayat S, Ahmad A (eds) Salicylic acid: a plant hormone, 2007. Springer, pp 25-68
  • Kavi Kishor PB, Sangam S, Amrutha RN, SriLaxmi P, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants : its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438
  • Kaydan D, Yagmur M, Okut N (2007) Effects of salicylic acid on the growth and some physiological characters in salt stressed wheat (Triticum aestivum L.). Tarim Bilimleri Dergisi 13:114–119
  • Khodary SEA (2004) Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. Int J Agric Biol 6:5–8
  • Klessig DF, Malamy J (1994) The salicylic acid signal in plants. Plant Mol Biol 26:1439–1458
  • Laurie-Berry N, Joardar V, Street IH, Kunkel BN (2006) The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid dependent defences during infection by Pseudomonas syringae. Mol Plant Microbe Interact 19:789–800
  • Liu J, Zhu JK (1998) A calcium sensor homolog required for plant salt tolerance. Sci 280:1943–1945
  • Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA 97:3730–3734
  • Mahajan S, Sopoy SK, Tuteja N (2006) Cloning and characterization of CBL-CIPK signaling components from a legume (Pisum sativum). FEBS J 27:907–925
  • Mahajan S, Pandey GK, Tuteja N (2008) Calcium- and salt-stress signaling in plants: shedding light on SOS pathway. Arch Biochem Biophys 471:146–158
  • Mao P, Duan M, Wei C, Li Y (2007) WRKY62 transcription factor acts downstream of cytosolic NPR1 and negatively regulates jasmonate-responsive gene expression. Plant Cell Physiol 48:833–842
  • McCord JM (2000) The evolution of free radicals and oxidative stress. Am J Med 108:652–659
  • Meneguzzo S, Navari-Izzo F, Izzo R (1999) Antioxidative responses of shoots and roots of wheat to increasing NaCl concentrations. J Plant Physiol 155:274–280
  • Meyer Y, Siala W, Bashandy T, Riondet C, Vignols F, Reichheld JP (2008) Glutaredoxins and thioredoxins in plants. Biochim Biophys Acta 1783:589–600
  • Miao Y, Zentgraf U (2007) The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell 19:819–830
  • Mikolajczyk M, Awotunde OS, Muszynska G, Klessig DF, Dobrowolska G (2000) Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. Plant Cell 12:165–178
  • Mittler R, Vanderauwera S, Gollery M, Breusegem FV (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498
  • Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55(399):1105–1113
  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681
  • Ndamukong I, Abdallat AA, Thurow C, Fode B, Zander M, Weigel R, Gatz C (2007) SA inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA responsive PDF1.2 transcription. Plant J 50:128–139
  • Overmyer K, Brosche M, Kangasjarvi J (2003) Reactive oxygen species and hormonal control of cell death. Trends in Plant Sci 8:335–342
  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxic Env Saf 60:324–349
  • Parida A, Das AB, Das P (2002) NaCl stress causes changes in photosynthetic pigments, protein and other metabolic components in the leaves of a true mangrove, Bruguieva parviflora in hydroponic cultures. J Plant Biol 45:28–36
  • Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE, Sharma SB, Klessig DF, Martienssen R, Mattsson O, Jensen AB, Mundy J (2000) Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111–1120
  • Plett DC, Moller IS (2010) Na+ transport in glycophytic plants: what we know and would like to know. Plant, Cell Environ 33(4):612–626
  • Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasmamembrane Na+/H? exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA 99:8436–8441
  • Rai VK (2002) Role of amino acids in plant responses to stress. Biol Plant 45:481–487
  • Raza SH, Athar HR, Ashraf M, Hameed A (2007) Glycinebetaineinduced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Env Exp Bot 60:368–376
  • Rizhsky L, Davletova S, Hongjian L, Mittler R (2004) The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279:11736–11743
  • Roxas VP, Smith RK Jr, Allen ER, Allen RD (1997) Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotech 15:988–991
  • Russell BL, Rathinasabapathi B, Hanson AD (1998) Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth. Plant Physiol 116:859–865
  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421
  • Sakhabutdinova AR, Fatkhutdinova DR, Shakirova FM (2004) Effect of salicylic acid on the activity of antioxidant enzymes in wheat under conditions of salination. Appl Biochem Microbiol 40:501–505
  • Sekmen AH, Tu¨rkan I, Takio S (2007) Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritime and salt-sensitive Plantago media. Physiol Plant 131:399–411
  • Senaratna T, Touchell D, Bunn T, Dixon K (2000) Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul 30:157–161
  • Senaratna T, Merritt D, Dixon K, Bunn E, Touchell D, Sivasithamparam K (2003) Benzoic acid may act as the functional group in salicylic acid and derivatives in the induction of multiple stress tolerance in plants. Plant Growth Regul 39:77–81
  • Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164:317–322
  • Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97:6896–6901
  • Singh B, Usha K (2003) Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regul 39:137–141
  • Singh PK, Bose B, Sharma MK, Singh A (2008) Physiological and molecular actions of salicylate in plants. In: Bose B, Hemantaranjan A (eds) Development in physiology, biochemistry and molecular biology of plants, vol 2. NIPA, New Delhi, pp 135–155
  • Spoel SH, Johnson JS, Dong X (2007) Regulation of tradeoffs between plant defences against pathogens with different lifestyles. Proc Natl Acad Sci USA 104:18842–18847
  • Szalai G, Janda T (2009) Effect of salt stress on the salicylic acid synthesis in young maize (Zea mays L.) plants. J Agron Crop Sci 195:165–171
  • Sze H, Li X, Palmgren MG (1999) Enegrization of plant cell membranes by H+-pumping ATPases: regulation and biosynthesis. Plant Cell 11:677–689
  • Szepesi A, Csiszar J, Bajkan Sz, Gemes K, Horvath F, Erdei L, Deer A, Simon LM, Tari I (2005) Role of salicylic acid pre-treatment on the acclimation of tomato plants to salt and osmotic stress. Acta Biol Szegediensis 49:123–125
  • Szepesi A, Csiszar J, Gemes K, Horvath E, Horvath F, Simon ML, Tari I (2009) Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L. J Plant Physiol 166:914–925
  • Tari I, Csiszar J, Szalai G, Horvath F, Pecsvaradi A, Kiss G, Szepesi A, Szabo M, Erdei L (2002) Acclimation of tomato plants to salinity stress after a salicylic acid pretreatment. Acta Biol Szegediensis 46:55–56
  • Tari I, Simon LM, Deer KA, Csiszar J, Bajkan Sz, Kis Gy, Szepesi A (2004) Influence of salicylic acid on salt stress acclimation of tomato plants: oxidative stress responses and osmotic adaptation. Acta Physiol Plantarum 26S:237
  • Tari I, Kiss G, Deer AK, Csiszar J, Erdei L, Galle Á , Gemes K, Horvath F, Poor P, Szepesi A ´ , Simon LM (2010) Salicylic acid increased aldose reductase activity and sorbitol accumulation in tomato plants under salt stress. Biol Plantarum 54:677–683
  • Teakle NL, Tyerman SD (2010) Mechanisms of Cl- transport contributing to salt tolerance. Plant, Cell Environ 33(4):566–589
  • Terman A, Brunk UT (2006) Oxidative stress, accumulation of biological ‘garbage’, and aging. Antioxid Redox Signal 8:197–204
  • Türkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Env Exp Bot 67:2–9
  • Türkan I, Bor M, Ozdemir F, Koca H (2005) Differential responses of lipid peroxidation and antioxidants in the leaves of droughttolerant P. acutifolius Gray and drought sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci :223–231
  • Vanderauwera S, Zimmermann P, Rombauts S, Vandenabeele S, Langebartels C, Gruissem W, Inze´ D, Van Breusegem F (2005) Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol 139:806–821
  • Wang D, Weaver ND, Kesarwani M, Dong X (2005) Induction of protein secretory pathway is required for systemic acquired resistance. Science 308:1036–1040
  • Wang D, Amornsiripanitch N, Dong X (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog 2:e123
  • Xiong L, Schumaker KS, Zhu JK (2002) Cell Signaling during cold, drought, and salt stress. Plant Cell 14:S165–S183
  • Yang Y, Qi M, Mei C (2004) Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant J 40:909–919
  • Yusuf M, Hasan SA, Ali B, Hayat S, Fariduddin Q, Ahmad A (2008) Effect of salicylic acid on salinity induced changes in Brassica juncea. J Int Plant Biol 50:1–4
  • Zahra S, Amin B, Ali VSM, Ali Y, Mehdi Y (2010) The salicylic acid effect on the tomato (Lycopersicum esculentum Mill.) sugar, protein and proline contents under salinity stress (NaCl). J. Biophys Structural Biol 2:35–41
  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273
  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f4c24a1c-e777-46a4-957d-3fde8b08f175
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.